Suppr超能文献

简便的一锅法纳米蛋白质组学用于 50-1000 个哺乳动物细胞的无标记蛋白质组分析。

Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50-1000 Mammalian Cells.

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, United States.

出版信息

J Proteome Res. 2021 Sep 3;20(9):4452-4461. doi: 10.1021/acs.jproteome.1c00403. Epub 2021 Aug 5.

Abstract

Recent advances in sample preparation enable label-free mass spectrometry (MS)-based proteome profiling of small numbers of mammalian cells. However, specific devices are often required to downscale sample processing volume from the standard 50-200 μL to sub-μL for effective nanoproteomics, which greatly impedes the implementation of current nanoproteomics methods by the proteomics research community. Herein, we report a facile one-pot nanoproteomics method termed SOPs-MS (urfactant-assisted ne-ot sample processing at the tandard volume coupled with MS) for convenient robust proteome profiling of 50-1000 mammalian cells. Building upon our recent development of SOPs-MS for label-free single-cell proteomics at a low μL volume, we have systematically evaluated its processing volume at 10-200 μL using 100 human cells. The processing volume of 50 μL that is in the range of volume for standard proteomics sample preparation has been selected for easy sample handling with a benchtop micropipette. SOPs-MS allows for reliable label-free quantification of ∼1200-2700 protein groups from 50 to 1000 MCF10A cells. When applied to small subpopulations of mouse colon crypt cells, SOPs-MS has revealed protein signatures between distinct subpopulation cells with identification of ∼1500-2500 protein groups for each subpopulation. SOPs-MS may pave the way for routine deep proteome profiling of small numbers of cells and low-input samples.

摘要

近年来,样品制备技术的进步使得基于无标记质谱(MS)的哺乳动物细胞少量蛋白质组学分析成为可能。然而,为了有效地进行纳米蛋白质组学研究,通常需要特定的设备将样品处理体积从标准的 50-200μL 缩小到亚微升级别,这极大地阻碍了当前纳米蛋白质组学方法在蛋白质组学研究界的应用。在此,我们报告了一种简便的一锅法纳米蛋白质组学方法,称为 SOPs-MS(标准体积下的表面活性剂辅助新型样品处理与 MS 结合),用于方便、稳健地对 50-1000 个哺乳动物细胞进行蛋白质组学分析。基于我们最近开发的用于低μL 体积下无标记单细胞蛋白质组学的 SOPs-MS,我们系统地评估了其在 10-200μL 范围内的处理体积,使用了 100 个人类细胞。我们选择了 50μL 的处理体积,这个体积范围与标准蛋白质组学样品制备的体积范围相匹配,便于使用台式微量移液器进行样品处理。SOPs-MS 允许从 50 到 1000 个 MCF10A 细胞中可靠地进行无标记定量分析,约有 1200-2700 个蛋白质组。当应用于小鼠结肠隐窝细胞的小亚群时,SOPs-MS 揭示了不同亚群细胞之间的蛋白质特征,每个亚群可鉴定约 1500-2500 个蛋白质组。SOPs-MS 可能为少量细胞和低输入样本的常规深度蛋白质组学分析铺平道路。

相似文献

1
Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50-1000 Mammalian Cells.
J Proteome Res. 2021 Sep 3;20(9):4452-4461. doi: 10.1021/acs.jproteome.1c00403. Epub 2021 Aug 5.
2
Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics.
Commun Biol. 2021 Mar 1;4(1):265. doi: 10.1038/s42003-021-01797-9.
4
Nanoparticle-Aided Nanoreactor for Nanoproteomics.
Anal Chem. 2021 Aug 3;93(30):10568-10576. doi: 10.1021/acs.analchem.1c01704. Epub 2021 Jul 23.
5
Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells.
Anal Bioanal Chem. 2019 Jul;411(19):4587-4596. doi: 10.1007/s00216-018-1493-9. Epub 2018 Nov 20.
6
Advances in microscale separations towards nanoproteomics applications.
J Chromatogr A. 2017 Nov 10;1523:40-48. doi: 10.1016/j.chroma.2017.07.055. Epub 2017 Jul 21.
8
Recent Technological Advances in the Mass Spectrometry-based Nanomedicine Studies: An Insight from Nanoproteomics.
Curr Pharm Des. 2019;25(13):1536-1553. doi: 10.2174/1381612825666190618123306.
9
[Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
Se Pu. 2020 Oct 8;38(10):1125-1132. doi: 10.3724/SP.J.1123.2020.03003.
10
Nanoproteomics comes of age.
Expert Rev Proteomics. 2018 Nov;15(11):865-871. doi: 10.1080/14789450.2018.1537787. Epub 2018 Oct 30.

引用本文的文献

1
Robust collection and processing for label-free single voxel proteomics.
Nat Commun. 2025 Jan 13;16(1):547. doi: 10.1038/s41467-024-54643-x.
2
Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity.
Nat Commun. 2024 Nov 21;15(1):10100. doi: 10.1038/s41467-024-54438-0.
3
Protocol for generating high-fidelity proteomic profiles using DROPPS.
STAR Protoc. 2024 Dec 20;5(4):103397. doi: 10.1016/j.xpro.2024.103397. Epub 2024 Oct 18.
4
[Applications of high performance liquid chromatography-mass spectrometry in proteomics].
Se Pu. 2024 Jul;42(7):601-612. doi: 10.3724/SP.J.1123.2023.11006.
6
Droplet-based proteomics reveals CD36 as a marker for progenitors in mammary basal epithelium.
Cell Rep Methods. 2024 Apr 22;4(4):100741. doi: 10.1016/j.crmeth.2024.100741. Epub 2024 Apr 2.
7
Polymeric Nanoparticles and Nanogels: How Do They Interact with Proteins?
Gels. 2023 Aug 6;9(8):632. doi: 10.3390/gels9080632.
8
One-STAGE Tip Method for TMT-Based Proteomic Analysis of a Minimal Amount of Cells.
ACS Omega. 2023 May 24;8(22):19741-19751. doi: 10.1021/acsomega.3c01392. eCollection 2023 Jun 6.
9
Quantitative proteomics of small numbers of closely-related cells: Selection of the optimal method for a clinical setting.
Front Med (Lausanne). 2022 Sep 27;9:997305. doi: 10.3389/fmed.2022.997305. eCollection 2022.

本文引用的文献

1
Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics.
Commun Biol. 2021 Mar 1;4(1):265. doi: 10.1038/s42003-021-01797-9.
2
Fully Automated Sample Processing and Analysis Workflow for Low-Input Proteome Profiling.
Anal Chem. 2021 Jan 26;93(3):1658-1666. doi: 10.1021/acs.analchem.0c04240. Epub 2020 Dec 22.
5
Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt.
Commun Biol. 2020 Aug 19;3(1):453. doi: 10.1038/s42003-020-01181-z.
6
Hallmarks of intestinal stem cells.
Development. 2020 Aug 3;147(15):dev182675. doi: 10.1242/dev.182675.
8
Automated sample preparation with SP3 for low-input clinical proteomics.
Mol Syst Biol. 2020 Jan;16(1):e9111. doi: 10.15252/msb.20199111.
9
An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics.
Mol Cell Proteomics. 2020 May;19(5):828-838. doi: 10.1074/mcp.RA119.001857. Epub 2020 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验