Suppr超能文献

面向纳米蛋白质组学应用的微尺度分离进展。

Advances in microscale separations towards nanoproteomics applications.

作者信息

Yi Lian, Piehowski Paul D, Shi Tujin, Smith Richard D, Qian Wei-Jun

机构信息

Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.

Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, United States.

出版信息

J Chromatogr A. 2017 Nov 10;1523:40-48. doi: 10.1016/j.chroma.2017.07.055. Epub 2017 Jul 21.

Abstract

Microscale separation (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. In recent decades significant advances have been achieved in MS-based proteomics. However, the current proteomics platforms still face an analytical challenge in overall sensitivity towards nanoproteomics applications for starting materials of less than 1μg total proteins (e.g., cellular heterogeneity in tissue pathologies). Herein, we review recent advances in microscale separation techniques and integrated sample processing strategies that improve the overall sensitivity and proteome coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.

摘要

微尺度分离(例如液相色谱或毛细管电泳)与质谱联用已成为先进蛋白质组学的主要工具,是理解复杂生物过程不可或缺的技术。近几十年来,基于质谱的蛋白质组学取得了重大进展。然而,当前的蛋白质组学平台在对总蛋白量少于1μg的起始材料(例如组织病理学中的细胞异质性)进行纳米蛋白质组学应用的整体灵敏度方面仍面临分析挑战。在此,我们综述了微尺度分离技术和集成样品处理策略的最新进展,这些进展提高了蛋白质组学工作流程的整体灵敏度和蛋白质组覆盖率,以及它们对纳米蛋白质组学应用的贡献。

相似文献

1
Advances in microscale separations towards nanoproteomics applications.
J Chromatogr A. 2017 Nov 10;1523:40-48. doi: 10.1016/j.chroma.2017.07.055. Epub 2017 Jul 21.
2
Nanoproteomics comes of age.
Expert Rev Proteomics. 2018 Nov;15(11):865-871. doi: 10.1080/14789450.2018.1537787. Epub 2018 Oct 30.
3
[Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
Se Pu. 2020 Oct 8;38(10):1125-1132. doi: 10.3724/SP.J.1123.2020.03003.
4
Recent advances in capillary separations for proteomics.
Electrophoresis. 2004 Dec;25(23-24):3913-26. doi: 10.1002/elps.200406154.
5
Review of Three-Dimensional Liquid Chromatography Platforms for Bottom-Up Proteomics.
Int J Mol Sci. 2020 Feb 23;21(4):1524. doi: 10.3390/ijms21041524.
7
Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50-1000 Mammalian Cells.
J Proteome Res. 2021 Sep 3;20(9):4452-4461. doi: 10.1021/acs.jproteome.1c00403. Epub 2021 Aug 5.
8
Capillary electrophoresis--mass spectrometry: recent trends in clinical proteomics.
J Pharm Biomed Anal. 2010 Dec 15;53(5):1161-9. doi: 10.1016/j.jpba.2010.06.035. Epub 2010 Jul 7.
9
Proteomics based on high-efficiency capillary separations.
Electrophoresis. 2002 Sep;23(18):3106-24. doi: 10.1002/1522-2683(200209)23:18<3106::AID-ELPS3106>3.0.CO;2-Y.
10
Mass spectrometry-based proteomics: existing capabilities and future directions.
Chem Soc Rev. 2012 May 21;41(10):3912-28. doi: 10.1039/c2cs15331a. Epub 2012 Apr 13.

引用本文的文献

3
4
The rise of single-cell proteomics.
Anal Sci Adv. 2021 Feb 1;2(3-4):84-94. doi: 10.1002/ansa.202000152. eCollection 2021 Apr.
5
Exploring Single-Cell Exposomics by Mass Spectrometry.
Environ Sci Technol. 2023 Aug 22;57(33):12201-12209. doi: 10.1021/acs.est.3c04524. Epub 2023 Aug 10.
6
Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles.
Mass Spectrom Rev. 2024 Jan-Feb;43(1):106-138. doi: 10.1002/mas.21824. Epub 2023 Jan 16.
7
The Omnitrap Platform: A Versatile Segmented Linear Ion Trap for Multidimensional Multiple-Stage Tandem Mass Spectrometry.
J Am Soc Mass Spectrom. 2022 Oct 5;33(10):1990-2007. doi: 10.1021/jasms.2c00214. Epub 2022 Sep 16.
8
9
Single-Cell Proteomics: The Critical Role of Nanotechnology.
Int J Mol Sci. 2022 Jun 16;23(12):6707. doi: 10.3390/ijms23126707.
10

本文引用的文献

1
Thiol-ene Monolithic Pepsin Microreactor with a 3D-Printed Interface for Efficient UPLC-MS Peptide Mapping Analyses.
Anal Chem. 2017 Apr 18;89(8):4573-4580. doi: 10.1021/acs.analchem.6b05103. Epub 2017 Apr 4.
2
Loss-less Nano-fractionator for High Sensitivity, High Coverage Proteomics.
Mol Cell Proteomics. 2017 Apr;16(4):694-705. doi: 10.1074/mcp.O116.065136. Epub 2017 Jan 26.
4
In-tip nanoreactors for cancer cells proteome profiling.
Anal Chim Acta. 2017 Jan 1;949:43-52. doi: 10.1016/j.aca.2016.11.021. Epub 2016 Nov 11.
5
Mass-spectrometric exploration of proteome structure and function.
Nature. 2016 Sep 15;537(7620):347-55. doi: 10.1038/nature19949.
7
Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian Cancer.
Cell. 2016 Jul 28;166(3):755-765. doi: 10.1016/j.cell.2016.05.069. Epub 2016 Jun 29.
9
Progress in Top-Down Proteomics and the Analysis of Proteoforms.
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):499-519. doi: 10.1146/annurev-anchem-071015-041550.
10
Proteogenomics connects somatic mutations to signalling in breast cancer.
Nature. 2016 Jun 2;534(7605):55-62. doi: 10.1038/nature18003. Epub 2016 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验