Department of Dermatology, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory School of Medicine, Emory University, Atlanta, Georgia, USA.
Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
J Invest Dermatol. 2022 Feb;142(2):323-332.e8. doi: 10.1016/j.jid.2021.07.154. Epub 2021 Aug 2.
Dominant and recessive mutations in the desmosomal cadherin, desmoglein (DSG) 1, cause the skin diseases palmoplantar keratoderma (PPK) and severe dermatitis, multiple allergies, and metabolic wasting (SAM) syndrome, respectively. In this study, we compare two dominant missense mutations in the DSG1 transmembrane domain (TMD), G557R and G562R, causing PPK (DSG1) and SAM syndrome (DSG1), respectively, to determine the differing pathomechanisms of these mutants. Expressing the DSG1 mutants in a DSG-null background, we use cellular and biochemical assays to reveal the differences in the mechanistic behavior of each mutant. Super-resolution microscopy and functional assays showed a failure by both mutants to assemble desmosomes due to reduced membrane trafficking and lipid raft targeting. DSG1 maintained normal expression levels and turnover relative to wildtype DSG1, but DSG1 lacked stability, leading to increased turnover through lysosomal and proteasomal pathways and reduced expression levels. These results differentiate the underlying pathomechanisms of these disorders, suggesting that DSG1 acts dominant negatively, whereas DSG1 is a loss-of-function mutation causing the milder PPK disease phenotype. These mutants portray the importance of the DSG TMD in desmosome function and suggest that a greater understanding of the desmosomal cadherin TMDs will further our understanding of the role that desmosomes play in epidermal pathophysiology.
桥粒黏附蛋白(DSG)1 的显性和隐性突变分别导致掌跖角化病(PPK)和严重皮炎、多发性过敏和代谢消耗(SAM)综合征等皮肤疾病。在这项研究中,我们比较了导致 PPK(DSG1)和 SAM 综合征(DSG1)的 DSG1 跨膜结构域(TMD)中的两个显性错义突变 G557R 和 G562R,以确定这些突变体的不同发病机制。在 DSG1 缺失背景下表达 DSG1 突变体,我们使用细胞和生化测定来揭示每个突变体在机械行为上的差异。超分辨率显微镜和功能测定显示,由于膜转运和脂筏靶向减少,两种突变体均无法组装桥粒。DSG1 相对于野生型 DSG1 保持正常的表达水平和周转率,但 DSG1 缺乏稳定性,导致通过溶酶体和蛋白酶体途径增加周转率和降低表达水平。这些结果区分了这些疾病的潜在发病机制,表明 DSG1 以显性负性方式起作用,而 DSG1 是导致较轻的 PPK 疾病表型的功能丧失突变。这些突变体描绘了 DSG TMD 在桥粒功能中的重要性,并表明对桥粒黏附蛋白 TMD 的进一步了解将有助于我们理解桥粒在表皮病理生理学中的作用。