Sass Danielle, Farkhad Bita Fayaz, Li Bo, Sally Chan Man-Pui, Albarracín Dolores
University of Illinois at Urbana-Champaign, USA.
University of Illinois at Urbana-Champaign, USA.
Spat Spatiotemporal Epidemiol. 2021 Aug;38:100436. doi: 10.1016/j.sste.2021.100436. Epub 2021 Jun 16.
Predicting human immunodeficiency virus (HIV) epidemiology is vital for achieving public health milestones. Incorporating spatial dependence when data varies by region can often provide better prediction results, at the cost of computational efficiency. However, with the growing number of covariates available that capture the data variability, the benefit of a spatial model could be less crucial. We investigate this conjecture by considering both non-spatial and spatial models for county-level HIV prediction over the US. Due to many counties with zero HIV incidences, we utilize a two-part model, with one part estimating the probability of positive HIV rates and the other estimating HIV rates of counties not classified as zero. Based on our data, the compound of logistic regression and a generalized estimating equation outperforms the candidate models in making predictions. The results suggest that considering spatial correlation for our data is not necessarily advantageous when the purpose is making predictions.
预测人类免疫缺陷病毒(HIV)的流行病学对于实现公共卫生里程碑至关重要。当数据因地区而异时,纳入空间依赖性通常可以提供更好的预测结果,但代价是计算效率。然而,随着可用于捕捉数据变异性的协变量数量不断增加,空间模型的优势可能就不那么关键了。我们通过考虑美国县级HIV预测的非空间模型和空间模型来研究这一推测。由于许多县的HIV发病率为零,我们使用两部分模型,一部分估计HIV阳性率的概率,另一部分估计未归类为零的县的HIV发病率。基于我们的数据,逻辑回归和广义估计方程的组合在进行预测方面优于候选模型。结果表明,当目的是进行预测时,考虑我们数据的空间相关性不一定具有优势。