Suppr超能文献

利用加法人工智能模型预测建筑物的时间序列能源数据以提高能源效率。

Forecasting Time-Series Energy Data in Buildings Using an Additive Artificial Intelligence Model for Improving Energy Efficiency.

机构信息

Faculty of Project Management, The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang, Vietnam.

出版信息

Comput Intell Neurosci. 2021 Jul 27;2021:6028573. doi: 10.1155/2021/6028573. eCollection 2021.

Abstract

Building energy efficiency is important because buildings consume a significant energy amount. The study proposed additive artificial neural networks (AANNs) for predicting energy use in residential buildings. A dataset in hourly resolution was used to evaluate the AANNs model, which was collected from a residential building with a solar photovoltaic system. The proposed AANNs model achieved good predictive accuracy with 14.04% in mean absolute percentage error (MAPE) and 111.98 Watt-hour in the mean absolute error (MAE). Compared to the support vector regression (SVR), the AANNs model can significantly improve the accuracy which was 103.75% in MAPE. Compared to the ANNs model, accuracy improvement percentage by the AANNs model was 4.6% in MAPE. The AANNs model was the most effective forecasting model among the investigated models in predicting energy consumption, which provides building managers with a useful tool to improve energy efficiency in buildings.

摘要

建筑节能很重要,因为建筑物消耗大量能源。本研究提出了用于预测住宅建筑能耗的加法人工神经网络(AANNs)。该模型使用了一个具有太阳能光伏系统的住宅建筑的每小时分辨率数据集进行评估。所提出的 AANNs 模型具有很好的预测精度,平均绝对百分比误差(MAPE)为 14.04%,平均绝对误差(MAE)为 111.98 瓦时。与支持向量回归(SVR)相比,AANNs 模型的精度提高了 103.75%。与神经网络(ANNs)模型相比,AANNs 模型在 MAPE 中的精度提高了 4.6%。AANNs 模型是在所研究的模型中预测能耗最有效的预测模型,为建筑经理提供了一种有用的工具,以提高建筑物的能源效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9493/8331294/b980a2cacb81/CIN2021-6028573.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验