Taylor Connor J, Seki Hikaru, Dannheim Friederike M, Willis Mark J, Clemens Graeme, Taylor Brian A, Chamberlain Thomas W, Bourne Richard A
Institute of Process Research and Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK.
React Chem Eng. 2021 May 7;6(8):1404-1411. doi: 10.1039/d1re00098e. eCollection 2021 Jul 27.
We herein report experimental applications of a novel, automated computational approach to chemical reaction network (CRN) identification. This report shows the first chemical applications of an autonomous tool to identify the kinetic model and parameters of a process, when considering both catalytic species and various integer and non-integer orders in the model's rate laws. This kinetic analysis methodology requires only the input of the species within the chemical system (starting materials, intermediates, products, ) and corresponding time-series concentration data to determine the kinetic information of the chemistry of interest. This is performed with minimal human interaction and several case studies were performed to show the wide scope and applicability of this process development tool. The approach described herein can be employed using experimental data from any source and the code for this methodology is also provided open-source.
我们在此报告一种用于化学反应网络(CRN)识别的新型自动化计算方法的实验应用。本报告展示了一种自主工具在化学方面的首次应用,即在考虑模型速率定律中的催化物种以及各种整数和非整数反应级数时,识别过程的动力学模型和参数。这种动力学分析方法仅需输入化学系统中的物种(起始原料、中间体、产物等)以及相应的时间序列浓度数据,即可确定感兴趣化学反应的动力学信息。这一过程在极少人工干预的情况下完成,并且进行了多个案例研究以展示该工艺开发工具的广泛适用范围和适用性。本文所述方法可使用来自任何来源的实验数据,并且该方法的代码也已开源提供。