Suppr超能文献

生物系统大规模动力学模型中的参数可识别性分析与可视化

Parameter identifiability analysis and visualization in large-scale kinetic models of biosystems.

作者信息

Gábor Attila, Villaverde Alejandro F, Banga Julio R

机构信息

BioProcess Engineering Group, IIM-CSIC, Eduardo Cabello 6, Vigo, 36208, Spain.

JRC-COMBINE, RWTH Aachen University, Photonics Cluster, Level 4, Campus-Boulevard 79, Aachen, 52074, Germany.

出版信息

BMC Syst Biol. 2017 May 5;11(1):54. doi: 10.1186/s12918-017-0428-y.

Abstract

BACKGROUND

Kinetic models of biochemical systems usually consist of ordinary differential equations that have many unknown parameters. Some of these parameters are often practically unidentifiable, that is, their values cannot be uniquely determined from the available data. Possible causes are lack of influence on the measured outputs, interdependence among parameters, and poor data quality. Uncorrelated parameters can be seen as the key tuning knobs of a predictive model. Therefore, before attempting to perform parameter estimation (model calibration) it is important to characterize the subset(s) of identifiable parameters and their interplay. Once this is achieved, it is still necessary to perform parameter estimation, which poses additional challenges.

METHODS

We present a methodology that (i) detects high-order relationships among parameters, and (ii) visualizes the results to facilitate further analysis. We use a collinearity index to quantify the correlation between parameters in a group in a computationally efficient way. Then we apply integer optimization to find the largest groups of uncorrelated parameters. We also use the collinearity index to identify small groups of highly correlated parameters. The results files can be visualized using Cytoscape, showing the identifiable and non-identifiable groups of parameters together with the model structure in the same graph.

RESULTS

Our contributions alleviate the difficulties that appear at different stages of the identifiability analysis and parameter estimation process. We show how to combine global optimization and regularization techniques for calibrating medium and large scale biological models with moderate computation times. Then we evaluate the practical identifiability of the estimated parameters using the proposed methodology. The identifiability analysis techniques are implemented as a MATLAB toolbox called VisId, which is freely available as open source from GitHub ( https://github.com/gabora/visid ).

CONCLUSIONS

Our approach is geared towards scalability. It enables the practical identifiability analysis of dynamic models of large size, and accelerates their calibration. The visualization tool allows modellers to detect parts that are problematic and need refinement or reformulation, and provides experimentalists with information that can be helpful in the design of new experiments.

摘要

背景

生化系统的动力学模型通常由具有许多未知参数的常微分方程组成。其中一些参数在实际中往往无法识别,也就是说,无法从现有数据中唯一确定它们的值。可能的原因包括对测量输出缺乏影响、参数之间的相互依赖以及数据质量差。不相关的参数可被视为预测模型的关键调节旋钮。因此,在尝试进行参数估计(模型校准)之前,表征可识别参数的子集及其相互作用非常重要。一旦完成此操作,仍有必要进行参数估计,这带来了额外的挑战。

方法

我们提出了一种方法,该方法(i)检测参数之间的高阶关系,(ii)将结果可视化以促进进一步分析。我们使用共线性指数以计算高效的方式量化一组参数之间的相关性。然后我们应用整数优化来找到最大的不相关参数组。我们还使用共线性指数来识别高度相关的小参数组。结果文件可以使用Cytoscape进行可视化,在同一张图中显示可识别和不可识别的参数组以及模型结构。

结果

我们的贡献减轻了可识别性分析和参数估计过程不同阶段出现的困难。我们展示了如何结合全局优化和正则化技术,以适度的计算时间校准中型和大型生物模型。然后我们使用所提出的方法评估估计参数的实际可识别性。可识别性分析技术作为一个名为VisId的MATLAB工具箱实现,可从GitHub(https://github.com/gabora/visid)作为开源免费获取。

结论

我们的方法旨在实现可扩展性。它能够对大型动态模型进行实际可识别性分析,并加速其校准。可视化工具使建模人员能够检测有问题的部分,这些部分需要改进或重新制定,并为实验人员提供有助于设计新实验的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9252/5420165/c757ca2f32ee/12918_2017_428_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验