Sato Tomomi, Masuda Koji, Sano Chikako, Matsumoto Keiji, Numata Hidetoshi, Munetoh Seiji, Kasama Toshihiro, Miyake Ryo
Graduate School of Engineering, The University of Tokyo, Kawasaki 212-0032, Japan.
Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK.
Micromachines (Basel). 2024 Aug 23;15(9):1064. doi: 10.3390/mi15091064.
Microreactor technologies have emerged as versatile platforms with the potential to revolutionize chemistry and materials research, offering sustainable solutions to global challenges in environmental and health domains. This survey paper provides an in-depth review of recent advancements in microreactor technologies, focusing on their role in facilitating accelerated discoveries in chemistry and materials. Specifically, we examine the convergence of microfluidics with machine intelligence and automation, enabling the exploitation of the cyber-physical environment as a highly integrated experimentation platform for rapid scientific discovery and process development. We investigate the applicability and limitations of microreactor-enabled discovery accelerators in various chemistry and materials contexts. Despite their tremendous potential, the integration of machine intelligence and automation into microreactor-based experiments presents challenges in establishing fully integrated, automated, and intelligent systems. These challenges can hinder the broader adoption of microreactor technologies within the research community. To address this, we review emerging technologies that can help lower barriers and facilitate the implementation of microreactor-enabled discovery accelerators. Lastly, we provide our perspective on future research directions for democratizing microreactor technologies, with the aim of accelerating scientific discoveries and promoting widespread adoption of these transformative platforms.
微反应器技术已成为多功能平台,有潜力彻底改变化学和材料研究,为环境与健康领域的全球挑战提供可持续解决方案。本综述文章深入回顾了微反应器技术的最新进展,重点关注其在促进化学和材料领域加速发现方面的作用。具体而言,我们研究了微流体学与机器智能及自动化的融合,使网络物理环境能够作为一个高度集成的实验平台,用于快速科学发现和工艺开发。我们探讨了基于微反应器的发现加速器在各种化学和材料背景下的适用性和局限性。尽管微反应器技术潜力巨大,但将机器智能和自动化集成到基于微反应器的实验中,在建立完全集成、自动化和智能的系统方面仍面临挑战。这些挑战可能会阻碍微反应器技术在研究界的更广泛应用。为解决这一问题,我们回顾了有助于降低障碍并促进基于微反应器的发现加速器实施的新兴技术。最后,我们就微反应器技术民主化的未来研究方向提出了我们的观点,旨在加速科学发现并促进这些变革性平台的广泛应用。