Suppr超能文献

基于广义下降方向的距离引导蛋白质折叠。

Distance-guided protein folding based on generalized descent direction.

机构信息

College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan USA.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab296.

Abstract

Advances in the prediction of the inter-residue distance for a protein sequence have increased the accuracy to predict the correct folds of proteins with distance information. Here, we propose a distance-guided protein folding algorithm based on generalized descent direction, named GDDfold, which achieves effective structural perturbation and potential minimization in two stages. In the global stage, random-based direction is designed using evolutionary knowledge, which guides conformation population to cross potential barriers and explore conformational space rapidly in a large range. In the local stage, locally rugged potential landscape can be explored with the aid of conjugate-based direction integrated into a specific search strategy, which can improve the exploitation ability. GDDfold is tested on 347 proteins of a benchmark set, 24 template-free modeling (FM) approaches targets of CASP13 and 20 FM targets of CASP14. Results show that GDDfold correctly folds [template modeling (TM) score ≥ = 0.5] 316 out of 347 proteins, where 65 proteins have TM scores that are greater than 0.8, and significantly outperforms Rosetta-dist (distance-assisted fragment assembly method) and L-BFGSfold (distance geometry optimization method). On CASP FM targets, GDDfold is comparable with five state-of-the-art full-version methods, namely, Quark, RaptorX, Rosetta, MULTICOM and trRosetta in the CASP 13 and 14 server groups.

摘要

在预测蛋白质序列残基间距离方面的进展提高了利用距离信息预测蛋白质正确折叠的准确性。在这里,我们提出了一种基于广义下降方向的距离引导蛋白质折叠算法,称为 GDDfold,它分两个阶段实现了有效的结构扰动和势能最小化。在全局阶段,使用进化知识设计基于随机的方向,引导构象种群快速跨越势能障碍并在大范围快速探索构象空间。在局部阶段,借助共轭方向辅助的搜索策略,可以探测局部崎岖的势能景观,提高开发能力。GDDfold 在一个基准集的 347 个蛋白质、24 个无模板建模(FM)目标的 CASP13 和 20 个无模板建模目标的 CASP14 上进行了测试。结果表明,GDDfold 正确折叠了 347 个蛋白质中的 316 个(模板建模(TM)评分≥=0.5),其中 65 个蛋白质的 TM 评分大于 0.8,明显优于 Rosetta-dist(距离辅助片段组装方法)和 L-BFGSfold(距离几何优化方法)。在 CASP FM 目标上,GDDfold 在 CASP13 和 14 服务器组中的 Quark、RaptorX、Rosetta、MULTICOM 和 trRosetta 等五个最先进的全版本方法中具有可比性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验