Suppr超能文献

磁共振成像(MRI)对改进识别高级别前列腺癌的深度学习模型的价值。对金泰尔等人的评论。通过在深度学习模型中结合不同的前列腺特异性抗原(PSA)分子形式和PSA密度优化识别高级别前列腺癌。2021年,,335。

Value of MRI to Improve Deep Learning Model That Identifies High-Grade Prostate Cancer. Comment on Gentile et al. Optimized Identification of High-Grade Prostate Cancer by Combining Different PSA Molecular Forms and PSA Density in a Deep Learning Model. 2021, , 335.

作者信息

Jue Joshua S, Mikhail David, González Javier, Alameddine Mahmoud

机构信息

Department of Urology, Lenox Hill Hospital, Northwell Health, Zucker School of Medicine at Hofstra/Northwell, New York, NY 10028, USA.

Department of Urology, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain.

出版信息

Diagnostics (Basel). 2021 Jul 5;11(7):1213. doi: 10.3390/diagnostics11071213.

Abstract

Prostate-specific antigen (PSA) has been criticized for its low specificity for prostate cancer, which has led to the increased adoption of additional biomarkers, PSA density (PSAD), and multiparametric magnetic resonance imaging (mpMRI) to increase the localization, risk stratification, and diagnosis of prostate cancer [...].

摘要

前列腺特异性抗原(PSA)因其对前列腺癌的低特异性而受到批评,这导致更多地采用其他生物标志物、前列腺特异抗原密度(PSAD)和多参数磁共振成像(mpMRI)来提高前列腺癌的定位、风险分层和诊断水平[...]。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验