文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚合物基微流控装置中的自组装永久微磁铁用于磁性细胞分选。

Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting.

机构信息

CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, University Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France.

CNRS, UMR5306 Institut Lumière Matière, University Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.

出版信息

Cells. 2021 Jul 9;10(7):1734. doi: 10.3390/cells10071734.


DOI:10.3390/cells10071734
PMID:34359904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8307954/
Abstract

Magnetophoresis-based microfluidic devices offer simple and reliable manipulation of micro-scale objects and provide a large panel of applications, from selective trapping to high-throughput sorting. However, the fabrication and integration of micro-scale magnets in microsystems involve complex and expensive processes. Here we report on an inexpensive and easy-to-handle fabrication process of micrometer-scale permanent magnets, based on the self-organization of NdFeB particles in a polymer matrix (polydimethylsiloxane, PDMS). A study of the inner structure by X-ray tomography revealed a chain-like organization of the particles leading to an array of hard magnetic microstructures with a mean diameter of 4 µm. The magnetic performance of the self-assembled micro-magnets was first estimated by COMSOL simulations. The micro-magnets were then integrated into a microfluidic device where they act as micro-traps. The magnetic forces exerted by the micro-magnets on superparamagnetic beads were measured by colloidal probe atomic force microscopy (AFM) and in operando in the microfluidic system. Forces as high as several nanonewtons were reached. Adding an external millimeter-sized magnet allowed target magnetization and the interaction range to be increased. Then, the integrated micro-magnets were used to study the magnetophoretic trapping efficiency of magnetic beads, providing efficiencies of 100% at 0.5 mL/h and 75% at 1 mL/h. Finally, the micro-magnets were implemented for cell sorting by performing white blood cell depletion.

摘要

基于磁泳的微流控设备可简单可靠地操控微尺度物体,并提供了从选择性捕获到高通量分选的广泛应用。然而,在微系统中制造和集成微尺度磁铁涉及复杂且昂贵的工艺。在此,我们报告了一种基于 NdFeB 颗粒在聚合物基质(聚二甲基硅氧烷,PDMS)中自组织的廉价且易于处理的制造微尺度永久磁铁的方法。通过 X 射线断层扫描对内部结构的研究揭示了颗粒的链状组织,从而形成了具有 4 µm 平均直径的硬磁微结构阵列。通过 COMSOL 模拟首先估算了自组装微磁铁的磁性能。然后将微磁铁集成到微流控设备中,作为微陷阱。通过胶体探针原子力显微镜(AFM)和微流控系统中的原位测量,测量了微磁铁对超顺磁珠施加的磁力。达到了高达数纳牛顿的力。添加外部毫米级磁铁可以增加目标磁化和相互作用范围。然后,使用集成的微磁铁研究了磁性珠的磁泳捕获效率,在 0.5 mL/h 时达到了 100%的效率,在 1 mL/h 时达到了 75%的效率。最后,通过进行白细胞耗竭来实现细胞分选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/316469148a79/cells-10-01734-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/466856c1aed6/cells-10-01734-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/bf3ba6d8ec7b/cells-10-01734-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/addaef5ebe39/cells-10-01734-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/da25c435a3f8/cells-10-01734-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/a4a553045b72/cells-10-01734-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/316469148a79/cells-10-01734-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/466856c1aed6/cells-10-01734-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/bf3ba6d8ec7b/cells-10-01734-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/addaef5ebe39/cells-10-01734-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/da25c435a3f8/cells-10-01734-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/a4a553045b72/cells-10-01734-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b91/8307954/316469148a79/cells-10-01734-g006.jpg

相似文献

[1]
Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting.

Cells. 2021-7-9

[2]
Self-assembled magnetic filter for highly efficient immunomagnetic separation.

Lab Chip. 2010-10-14

[3]
Separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis.

Electrophoresis. 2020-6

[4]
Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.

Sci Rep. 2024-6-10

[5]
Magnetic-based microfluidic platform for biomolecular separation.

Biomed Microdevices. 2006-6

[6]
Microfluidic immunomagnetic cell separation from whole blood.

J Chromatogr B Analyt Technol Biomed Life Sci. 2016-2-1

[7]
High gradient magnetic field microstructures for magnetophoretic cell separation.

J Chromatogr B Analyt Technol Biomed Life Sci. 2016-8-1

[8]
Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.

Electrophoresis. 2009-5

[9]
Deterministic Lateral Displacement-Based Separation of Magnetic Beads and Its Applications of Antibody Recognition.

Sensors (Basel). 2020-5-16

[10]
Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.

Lab Chip. 2015-4-21

引用本文的文献

[1]
Integrated Microfluidics for Single-Cell Separation and On-Chip Analysis: Novel Applications and Recent Advances.

Small Sci. 2024-2-2

[2]
Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA.

Micromachines (Basel). 2024-8-22

[3]
Magnetically Actuated Microscaffold with Controllable Magnetization and Morphology for Regeneration of Osteochondral Tissue.

Micromachines (Basel). 2023-2-11

[4]
ANN-Based Instantaneous Simulation of Particle Trajectories in Microfluidics.

Micromachines (Basel). 2022-11-28

[5]
Microscale magnetic field modulation using rapidly patterned soft magnetic microstructures.

RSC Adv. 2021-10-27

[6]
Design and Construction of a Chamber Enabling the Observation of Living Cells in the Field of a Constant Magnetic Force.

Cells. 2021-11-28

本文引用的文献

[1]
Nanonewton Magnetophoretic Microtrap Array for Microsystems.

Langmuir. 2020-11-25

[2]
Parallelized Manipulation of Adherent Living Cells by Magnetic Nanoparticles-Mediated Forces.

Int J Mol Sci. 2020-9-8

[3]
Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells.

Proc Natl Acad Sci U S A. 2020-7-8

[4]
Integration of rolling circle amplification and optomagnetic detection on a polymer chip.

Biosens Bioelectron. 2019-7-3

[5]
A flyover style microfluidic chip for highly purified magnetic cell separation.

Biosens Bioelectron. 2019-1-30

[6]
Prismatic Deflection of Live Tumor Cells and Cell Clusters.

ACS Nano. 2018-11-21

[7]
Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor.

Biosens Bioelectron. 2018-8-25

[8]
Magnetophoretic induced convective capture of highly diffusive superparamagnetic nanoparticles.

Soft Matter. 2018-4-4

[9]
Amplified Micromagnetic Field Gradients Enable High-Resolution Profiling of Rare Cell Subpopulations.

ACS Appl Mater Interfaces. 2017-7-27

[10]
Bedside Immune Monitoring: An Automated Immunoassay Platform for Quantification of Blood Biomarkers in Patient Serum within 20 Minutes.

Anal Chem. 2017-4-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索