CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, University Lyon, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France.
CNRS, UMR5306 Institut Lumière Matière, University Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France.
Cells. 2021 Jul 9;10(7):1734. doi: 10.3390/cells10071734.
Magnetophoresis-based microfluidic devices offer simple and reliable manipulation of micro-scale objects and provide a large panel of applications, from selective trapping to high-throughput sorting. However, the fabrication and integration of micro-scale magnets in microsystems involve complex and expensive processes. Here we report on an inexpensive and easy-to-handle fabrication process of micrometer-scale permanent magnets, based on the self-organization of NdFeB particles in a polymer matrix (polydimethylsiloxane, PDMS). A study of the inner structure by X-ray tomography revealed a chain-like organization of the particles leading to an array of hard magnetic microstructures with a mean diameter of 4 µm. The magnetic performance of the self-assembled micro-magnets was first estimated by COMSOL simulations. The micro-magnets were then integrated into a microfluidic device where they act as micro-traps. The magnetic forces exerted by the micro-magnets on superparamagnetic beads were measured by colloidal probe atomic force microscopy (AFM) and in operando in the microfluidic system. Forces as high as several nanonewtons were reached. Adding an external millimeter-sized magnet allowed target magnetization and the interaction range to be increased. Then, the integrated micro-magnets were used to study the magnetophoretic trapping efficiency of magnetic beads, providing efficiencies of 100% at 0.5 mL/h and 75% at 1 mL/h. Finally, the micro-magnets were implemented for cell sorting by performing white blood cell depletion.
基于磁泳的微流控设备可简单可靠地操控微尺度物体,并提供了从选择性捕获到高通量分选的广泛应用。然而,在微系统中制造和集成微尺度磁铁涉及复杂且昂贵的工艺。在此,我们报告了一种基于 NdFeB 颗粒在聚合物基质(聚二甲基硅氧烷,PDMS)中自组织的廉价且易于处理的制造微尺度永久磁铁的方法。通过 X 射线断层扫描对内部结构的研究揭示了颗粒的链状组织,从而形成了具有 4 µm 平均直径的硬磁微结构阵列。通过 COMSOL 模拟首先估算了自组装微磁铁的磁性能。然后将微磁铁集成到微流控设备中,作为微陷阱。通过胶体探针原子力显微镜(AFM)和微流控系统中的原位测量,测量了微磁铁对超顺磁珠施加的磁力。达到了高达数纳牛顿的力。添加外部毫米级磁铁可以增加目标磁化和相互作用范围。然后,使用集成的微磁铁研究了磁性珠的磁泳捕获效率,在 0.5 mL/h 时达到了 100%的效率,在 1 mL/h 时达到了 75%的效率。最后,通过进行白细胞耗竭来实现细胞分选。
Lab Chip. 2010-10-14
Biomed Microdevices. 2006-6
J Chromatogr B Analyt Technol Biomed Life Sci. 2016-2-1
J Chromatogr B Analyt Technol Biomed Life Sci. 2016-8-1
Micromachines (Basel). 2023-2-11
Micromachines (Basel). 2022-11-28
Langmuir. 2020-11-25
Proc Natl Acad Sci U S A. 2020-7-8
Biosens Bioelectron. 2019-7-3
Biosens Bioelectron. 2019-1-30
ACS Nano. 2018-11-21
Biosens Bioelectron. 2018-8-25
ACS Appl Mater Interfaces. 2017-7-27