正、负磁泳增强微流控多靶分离。

Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.

机构信息

Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.

System on Chip Lab, Department of Mechanical and Nuclear Engineering, Khalifa University of Science & Technology, 127788, Abu Dhabi, United Arab Emirates.

出版信息

Sci Rep. 2024 Jun 10;14(1):13293. doi: 10.1038/s41598-024-64330-y.

Abstract

We introduce magnetophoresis-based microfluidics for sorting biological targets using positive Magnetophoresis (pM) for magnetically labeled particles and negative Magnetophoresis (nM) for label-free particles. A single, externally magnetized ferromagnetic wire induces repulsive forces and is positioned across the focused sample flow near the main channel's closed end. We analyze magnetic attributes and separation performance under two transverse dual-mode magnetic configurations, examining magnetic fields, hydrodynamics, and forces on microparticles of varying sizes and properties. In pM, the dual-magnet arrangement (DMA) for sorting three distinct particles shows higher magnetic gradient generation and throughput than the single-magnet arrangement (SMA). In nM, the numerical results for SMA sorting of red blood cells (RBCs), white blood cells (WBCs), and prostate cancer cells (PC3-9) demonstrate superior magnetic properties and throughput compared to DMA. Magnetized wire linear movement is a key design parameter, allowing device customization. An automated device for handling more targets can be created by manipulating magnetophoretic repulsion forces. The transverse wire and magnet arrangement accommodate increased channel depth without sacrificing efficiency, yielding higher throughput than other devices. Experimental validation using soft lithography and 3D printing confirms successful sorting and separation, aligning well with numerical results. This demonstrates the successful sorting and separating of injected particles within a hydrodynamically focused sample in all systems. Both numerical and experimental findings indicate a separation accuracy of 100% across various Reynolds numbers. The primary channel dimensions measure 100 µm in height and 200 µm in width. N52 permanent magnets were employed in both numerical simulations and experiments. For numerical simulations, a remanent flux density of 1.48 T was utilized. In the experimental setup, magnets measuring 0.5 × 0.5 × 0.125 inches and 0.5 × 0.5 × 1 inch were employed. The experimental data confirm the device's capability to achieve 100% separation accuracy at a Reynolds number of 3. However, this study did not explore the potential impact of increased flow rates on separation accuracy.

摘要

我们引入基于磁泳的微流控技术,用于使用正磁泳(pM)对磁性标记的颗粒进行分选,使用负磁泳(nM)对无标记的颗粒进行分选。一根单独的外部磁化铁磁线会产生排斥力,并放置在靠近主通道封闭端的聚焦样品流的横截面上。我们分析了两种横向双模磁场配置下的磁属性和分离性能,研究了不同尺寸和特性的微颗粒的磁场、流体动力学和受力情况。在 pM 中,用于分选三种不同颗粒的双磁体布置(DMA)比单磁体布置(SMA)产生更高的磁场梯度和通量。在 nM 中,SMA 分选红细胞(RBC)、白细胞(WBC)和前列腺癌细胞(PC3-9)的数值结果表明,与 DMA 相比,其具有更好的磁性和通量。磁化线的线性运动是一个关键的设计参数,允许对设备进行定制。通过操纵磁泳排斥力,可以创建一个用于处理更多目标的自动化设备。横向线和磁体布置适应增加的通道深度而不牺牲效率,产生比其他设备更高的通量。使用软光刻和 3D 打印进行的实验验证证实了成功的分选和分离,与数值结果吻合良好。这表明在所有系统中,成功地在水力聚焦的样品中对注入的颗粒进行了分选和分离。数值和实验结果都表明,在各种雷诺数下,分离精度达到 100%。主通道尺寸为 100µm 高、200µm 宽。在数值模拟和实验中都使用了 N52 永磁体。在数值模拟中,采用剩磁密度为 1.48T。在实验装置中,使用了 0.5×0.5×0.125 英寸和 0.5×0.5×1 英寸的磁铁。实验数据证实了该设备在雷诺数为 3 时能够达到 100%的分离精度。然而,本研究并未探讨增加流速对分离精度的潜在影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e8b/11164922/4b102c4051b6/41598_2024_64330_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索