文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用四种生物学模型比较原始石墨烯和氧化石墨烯的毒性

Comparison of the Toxicity of Pristine Graphene and Graphene Oxide, Using Four Biological Models.

作者信息

Jaworski Sławomir, Strojny-Cieślak Barbara, Wierzbicki Mateusz, Kutwin Marta, Sawosz Ewa, Kamaszewski Maciej, Matuszewski Arkadiusz, Sosnowska Malwina, Szczepaniak Jarosław, Daniluk Karolina, Lange Agata, Pruchniewski Michał, Zawadzka Katarzyna, Łojkowski Maciej, Chwalibog Andre

机构信息

Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland.

Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland.

出版信息

Materials (Basel). 2021 Jul 29;14(15):4250. doi: 10.3390/ma14154250.


DOI:10.3390/ma14154250
PMID:34361444
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8348526/
Abstract

There are numerous applications of graphene in biomedicine and they can be classified into several main areas: delivery systems, sensors, tissue engineering and biological agents. The growing biomedical field of applications of graphene and its derivates raises questions regarding their toxicity. We will demonstrate an analysis of the toxicity of two forms of graphene using four various biological models: zebrafish () embryo, duckweed (), human HS-5 cells and bacteria (). The toxicity of pristine graphene (PG) and graphene oxide (GO) was tested at concentrations of 5, 10, 20, 50 and 100 µg/mL. Higher toxicity was noted after administration of high doses of PG and GO in all tested biological models. Hydrophilic GO shows greater toxicity to biological models living in the entire volume of the culture medium (zebrafish, duckweed, ). PG showed the highest toxicity to adherent cells growing on the bottom of the culture plates-human HS-5 cells. The differences in toxicity between the tested graphene materials result from their physicochemical properties and the model used. Dose-dependent toxicity has been demonstrated with both forms of graphene.

摘要

石墨烯在生物医学领域有众多应用,可分为几个主要领域:递送系统、传感器、组织工程和生物制剂。石墨烯及其衍生物在生物医学领域不断增长的应用引发了关于其毒性的问题。我们将使用四种不同的生物模型对两种形式的石墨烯的毒性进行分析:斑马鱼胚胎、浮萍、人HS-5细胞和细菌。在5、10、20、50和100μg/mL的浓度下测试了原始石墨烯(PG)和氧化石墨烯(GO)的毒性。在所有测试的生物模型中,高剂量的PG和GO给药后均观察到更高的毒性。亲水性GO对生活在整个培养基体积中的生物模型(斑马鱼、浮萍)表现出更大的毒性。PG对生长在培养板底部的贴壁细胞——人HS-5细胞表现出最高的毒性。测试的石墨烯材料之间的毒性差异源于它们的物理化学性质和所使用的模型。两种形式的石墨烯均已证明具有剂量依赖性毒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/b750d05f6138/materials-14-04250-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/d51315a275a3/materials-14-04250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/eb985f7a3bd0/materials-14-04250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/a4ae425712cd/materials-14-04250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/506f5d303090/materials-14-04250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/eed2351ae830/materials-14-04250-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/953905ee2ee7/materials-14-04250-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/68dc90c9beed/materials-14-04250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/a8f48279de4b/materials-14-04250-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/05532524e93c/materials-14-04250-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/a5bc8147452e/materials-14-04250-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/b692ae71ee68/materials-14-04250-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/c5823cf665ea/materials-14-04250-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/b88ed583f962/materials-14-04250-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/7da1f41f9529/materials-14-04250-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/b750d05f6138/materials-14-04250-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/d51315a275a3/materials-14-04250-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/eb985f7a3bd0/materials-14-04250-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/a4ae425712cd/materials-14-04250-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/506f5d303090/materials-14-04250-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/eed2351ae830/materials-14-04250-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/953905ee2ee7/materials-14-04250-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/68dc90c9beed/materials-14-04250-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/a8f48279de4b/materials-14-04250-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/05532524e93c/materials-14-04250-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/a5bc8147452e/materials-14-04250-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/b692ae71ee68/materials-14-04250-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/c5823cf665ea/materials-14-04250-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/b88ed583f962/materials-14-04250-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/7da1f41f9529/materials-14-04250-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ea0/8348526/b750d05f6138/materials-14-04250-g015.jpg

相似文献

[1]
Comparison of the Toxicity of Pristine Graphene and Graphene Oxide, Using Four Biological Models.

Materials (Basel). 2021-7-29

[2]
In vivo toxicity evaluation of pristine graphene in developing zebrafish (Danio rerio) embryos.

Environ Sci Pollut Res Int. 2018-2-23

[3]
Pristine graphene and graphene oxide induce multi-organ defects in zebrafish (Danio rerio) larvae/juvenile: an in vivo study.

Environ Sci Pollut Res Int. 2021-7

[4]
Pristine graphene induces cardiovascular defects in zebrafish (Danio rerio) embryogenesis.

Environ Pollut. 2018-8-22

[5]
Toxicity of different forms of graphene in a chicken embryo model.

Environ Sci Pollut Res Int. 2016-7-19

[6]
Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches.

Environ Pollut. 2021-6-1

[7]
Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: In-vivo toxicity assessment.

Sci Total Environ. 2019-4-8

[8]
Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo.

Environ Pollut. 2019-1-24

[9]
Effects of oxidation degree on photo-transformation and the resulting toxicity of graphene oxide in aqueous environment.

Environ Pollut. 2019-3-30

[10]
Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis.

Ecotoxicol Environ Saf. 2021-1-15

引用本文的文献

[1]
SARS-CoV-2 pseudovirus dysregulates hematopoiesis and induces inflammaging of hematopoietic stem and progenitor cells.

Exp Mol Med. 2025-3

[2]
The Delivery of Mimic miRNA-7 into Glioblastoma Cells and Tumour Tissue by Graphene Oxide Nanosystems.

Nanotechnol Sci Appl. 2024-9-11

[3]
Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors.

Discov Nano. 2024-6-17

[4]
Graphene oxide and oxidized carbon nanodiscs as biomedical scaffolds for the targeted delivery of quercetin to cancer cells.

Nanoscale Adv. 2024-4-17

[5]
The cytocompatibility of graphene oxide as a platform to enhance the effectiveness and safety of silver nanoparticles through in vitro studies.

Environ Sci Pollut Res Int. 2024-12

[6]
Graphene Oxide Enhanced Cisplatin Cytotoxic Effect in Glioblastoma and Cervical Cancer.

Molecules. 2023-8-25

[7]
Progress in Carbon Nanostructures: From Synthesis to Applications.

Nanomaterials (Basel). 2023-7-26

[8]
Cytotoxicity of Carbon Nanotubes, Graphene, Fullerenes, and Dots.

Nanomaterials (Basel). 2023-4-25

[9]
Antimicrobial, anticancer, and biofilm inhibition studies of highly reduced graphene oxide (HRG): and analysis.

Front Bioeng Biotechnol. 2023-3-16

[10]
Graphene Oxide Decreases Pro-Inflammatory Proteins Production in Skeletal Muscle Cells Exposed to SARS-CoV-2 Spike Protein.

Nanotechnol Sci Appl. 2023-1-19

本文引用的文献

[1]
Graphene Oxide and Reduced Graphene Oxide Exhibit Cardiotoxicity Through the Regulation of Lipid Peroxidation, Oxidative Stress, and Mitochondrial Dysfunction.

Front Cell Dev Biol. 2021-3-18

[2]
Graphene Oxide Negatively Regulates Cell Cycle in Embryonic Fibroblast Cells.

Int J Nanomedicine. 2020-8-19

[3]
Antibacterial activity of graphene oxide nanosheet against multidrug resistant superbugs isolated from infected patients.

R Soc Open Sci. 2020-7-15

[4]
Effect of Graphene Family Materials on Multiple Myeloma and Non-Hodgkin's Lymphoma Cell Lines.

Materials (Basel). 2020-8-3

[5]
Nanoparticles induced embryo-fetal toxicity.

Toxicol Ind Health. 2020-3

[6]
Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review.

Front Bioeng Biotechnol. 2020-5-25

[7]
Acute exposure of zebrafish (Danio rerio) larvae to environmental concentrations of selected antidepressants: Bioaccumulation, physiological and histological changes.

Comp Biochem Physiol C Toxicol Pharmacol. 2019-11-13

[8]
Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation.

J Colloid Interface Sci. 2019-3-14

[9]
Degradation of Mitochondria and Oxidative Stress as the Main Mechanism of Toxicity of Pristine Graphene on U87 Glioblastoma Cells and Tumors and HS-5 Cells.

Int J Mol Sci. 2019-2-2

[10]
Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme.

Int J Mol Sci. 2018-12-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索