Suppr超能文献

癌症的体细胞分子进化:突变、选择与上位性。

The somatic molecular evolution of cancer: Mutation, selection, and epistasis.

作者信息

Dasari Krishna, Somarelli Jason A, Kumar Sudhir, Townsend Jeffrey P

机构信息

Yale College, New Haven, CT, USA.

Department of Medicine, Duke University Medical Center, USA.

出版信息

Prog Biophys Mol Biol. 2021 Oct;165:56-65. doi: 10.1016/j.pbiomolbio.2021.08.003. Epub 2021 Aug 6.

Abstract

Cancer progression has been attributed to somatic changes in single-nucleotide variants, copy-number aberrations, loss of heterozygosity, chromosomal instability, epistatic interactions, and the tumor microenvironment. It is not entirely clear which of these changes are essential and which are ancillary to cancer. The dynamic nature of cancer evolution in a patient can be illuminated using several concepts and tools from classical evolutionary biology. Neutral mutation rates in cancer cells are calculable from genomic data such as synonymous mutations, and selective pressures are calculable from rates of fixation occurring beyond the expectation by neutral mutation and drift. However, these cancer effect sizes of mutations are complicated by epistatic interactions that can determine the likely sequence of gene mutations. In turn, longitudinal phylogenetic analyses of somatic cancer progression offer an opportunity to identify key moments in cancer evolution, relating the timing of driver mutations to corresponding landmarks in the clinical timeline. These analyses reveal temporal aspects of genetic and phenotypic change during tumorigenesis and across clinical timescales. Using a related framework, clonal deconvolution, physical locations of clones, and their phylogenetic relations can be used to infer tumor migration histories. Additionally, genetic interactions with the tumor microenvironment can be analyzed with longstanding approaches applied to organismal genotype-by-environment interactions. Fitness landscapes for cancer evolution relating to genotype, phenotype, and environment could enable more accurate, personalized therapeutic strategies. An understanding of the trajectories underlying the evolution of neoplasms, primary, and metastatic tumors promises fundamental advances toward accurate and personalized predictions of therapeutic response.

摘要

癌症进展归因于单核苷酸变异、拷贝数畸变、杂合性缺失、染色体不稳定、上位性相互作用以及肿瘤微环境中的体细胞变化。目前尚不完全清楚这些变化中哪些对癌症至关重要,哪些是辅助性的。利用经典进化生物学中的一些概念和工具,可以阐明患者体内癌症进化的动态本质。癌细胞中的中性突变率可根据同义突变等基因组数据计算得出,而选择压力可根据中性突变和漂变预期之外的固定率计算得出。然而,这些突变对癌症的效应大小因上位性相互作用而变得复杂,上位性相互作用可决定基因突变的可能顺序。反过来,对体细胞癌症进展的纵向系统发育分析提供了一个机会,以识别癌症进化中的关键时刻,将驱动突变的时间与临床时间线中的相应标志性事件联系起来。这些分析揭示了肿瘤发生过程中以及整个临床时间尺度上遗传和表型变化的时间方面。使用相关框架,克隆反卷积、克隆的物理位置及其系统发育关系可用于推断肿瘤迁移历史。此外,可采用长期应用于生物体基因型与环境相互作用的方法来分析与肿瘤微环境的遗传相互作用。与基因型、表型和环境相关的癌症进化适应度景观能够实现更准确的个性化治疗策略。了解肿瘤、原发性肿瘤和转移性肿瘤进化背后的轨迹,有望在准确和个性化预测治疗反应方面取得根本性进展。

相似文献

1
The somatic molecular evolution of cancer: Mutation, selection, and epistasis.癌症的体细胞分子进化:突变、选择与上位性。
Prog Biophys Mol Biol. 2021 Oct;165:56-65. doi: 10.1016/j.pbiomolbio.2021.08.003. Epub 2021 Aug 6.
3
In vivo functional phenotypes from a computational epistatic model of evolution.从进化的计算上位性模型中得出的体内功能表型。
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2308895121. doi: 10.1073/pnas.2308895121. Epub 2024 Jan 29.
4
Emergent time scales of epistasis in protein evolution.蛋白质进化中突现的互作时间尺度。
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2406807121. doi: 10.1073/pnas.2406807121. Epub 2024 Sep 26.
8
Should evolutionary geneticists worry about higher-order epistasis?进化遗传学家是否应该担心高阶上位性?
Curr Opin Genet Dev. 2013 Dec;23(6):700-7. doi: 10.1016/j.gde.2013.10.007. Epub 2013 Nov 27.

引用本文的文献

3
Applying multilevel selection to understand cancer evolution and progression.应用多层次选择来理解癌症的演变和进展。
PLoS Biol. 2025 Jul 18;23(7):e3003290. doi: 10.1371/journal.pbio.3003290. eCollection 2025 Jul.
5
Cell-cell fusion in cancer: The next cancer hallmark?细胞融合与癌症:下一个癌症标志?
Int J Biochem Cell Biol. 2024 Oct;175:106649. doi: 10.1016/j.biocel.2024.106649. Epub 2024 Aug 24.

本文引用的文献

1
The Hallmarks of Cancer as Ecologically Driven Phenotypes.作为生态驱动型表型的癌症特征
Front Ecol Evol. 2021 Apr;9. doi: 10.3389/fevo.2021.661583. Epub 2021 Apr 28.
4
Cancer research needs a better map.癌症研究需要一张更好的图谱。
Nature. 2021 Jan;589(7843):514-516. doi: 10.1038/d41586-021-00182-0.
6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验