Department of Environment Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA.
Environ Int. 2021 Dec;157:106810. doi: 10.1016/j.envint.2021.106810. Epub 2021 Aug 5.
Chronic exposure to certain metals plays a role in disease development. Integrating untargeted metabolomics with urinary metallome data may contribute to better understanding the pathophysiology of diseases and complex molecular interactions related to environmental metal exposures. To discover novel associations between urinary metal biomarkers and metabolism networks, we conducted an integrative metallome-metabolome analysis using a panel of urinary metals and untargeted blood metabolomic data from the Strong Heart Family Study (SHFS).
The SHFS is a prospective family-based cohort study comprised of American Indian men and women recruited in 2001-2003. This nested case-control analysis of 145 participants of which 50 developed incident diabetes at follow up in 2006-2009, included participants with urinary metal and untargeted metabolomic data. Concentrations of 8 creatinine-adjusted urine metals/metalloids [antimony (Sb), cadmium (Cd), lead (Pb), molybdenum (Mo), selenium (Se), tungsten (W), uranium (U) and zinc (Zn)], and 4 arsenic species [inorganic arsenic (iAs), monomethylarsonate (MMA), dimethylarsinate (DMA), and arsenobetaine (AsB)] were measured. Global metabolomics was performed on plasma samples using high-resolution Orbitrap mass spectrometry. We performed an integrative network analysis using xMWAS and a metabolic pathway analysis using Mummichog.
8,810 metabolic features and 12 metal species were included in the integrative network analysis. Most metal species were associated with distinct subsets of metabolites, forming single-metal-multiple-metabolite clusters (|r|>0.28, p-value < 0.001). DMA (clustering with W), iAs (clustering with U), together with Mo and Se showed modest interactions through associations with common metabolites. Pathway enrichment analysis of associated metabolites (|r|>0.17, p-value < 0.1) showed effects in amino acid metabolism (AsB, Sb, Se and U), fatty acid and lipid metabolism (iAs, Mo, W, Sb, Pb, Cd and Zn). In stratified analyses among participants who went on to develop diabetes, iAs and U clustered together through shared metabolites, and both were associated with the phosphatidylinositol phosphate metabolism pathway; metals were also associated with metabolites in energy metabolism (iAs, MMA, DMA, U, W) and xenobiotic degradation and metabolism (DMA, Pb) pathways.
In this integrative analysis of multiple metals and untargeted metabolomics, results show common associations with fatty acid, energy and amino acid metabolism pathways. Results for individual metabolite associations differed for different metals, indicating that larger populations will be needed to confirm the metal-metal interactions detected here, such as the strong interaction of uranium and inorganic arsenic. Understanding the biochemical networks underlying metabolic homeostasis and their association with exposure to multiple metals may help identify novel biomarkers, pathways of disease, potential signatures of environmental metal exposure.
慢性暴露于某些金属会在疾病发展中起作用。将非靶向代谢组学与尿金属组学数据相结合,可能有助于更好地了解与环境金属暴露相关的疾病的病理生理学和复杂的分子相互作用。为了发现尿金属生物标志物与代谢网络之间的新关联,我们使用尿金属面板和来自强心家族研究(SHFS)的非靶向血液代谢组学数据进行了综合金属组学-代谢组学分析。
SHFS 是一项前瞻性基于家族的队列研究,包括 2001-2003 年招募的美国印第安男女。这项针对 145 名参与者的嵌套病例对照分析中,其中 50 名参与者在 2006-2009 年的随访中发生了糖尿病,其中包括具有尿金属和非靶向代谢组学数据的参与者。对 8 种经肌酐调整的尿液金属/类金属[锑(Sb)、镉(Cd)、铅(Pb)、钼(Mo)、硒(Se)、钨(W)、铀(U)和锌(Zn)]和 4 种砷物种[无机砷(iAs)、单甲基砷酸(MMA)、二甲基砷酸(DMA)和砷甜菜碱(AsB)]进行了测量。使用高分辨率轨道阱质谱法对血浆样本进行了全局代谢组学分析。我们使用 xMWAS 进行了综合网络分析,并使用 Mummichog 进行了代谢途径分析。
综合网络分析中包含了 8810 种代谢特征和 12 种金属物质。大多数金属物质与不同的代谢物子集相关联,形成单一金属-多种代谢物簇(|r|>0.28,p 值<0.001)。DMA(与 W 聚类)、iAs(与 U 聚类)与 Mo 和 Se 一起通过与共同代谢物的关联显示出适度的相互作用。与相关代谢物的途径富集分析(|r|>0.17,p 值<0.1)表明,氨基酸代谢(AsB、Sb、Se 和 U)、脂肪酸和脂质代谢(iAs、Mo、W、Sb、Pb、Cd 和 Zn)受到影响。在糖尿病进展参与者的分层分析中,iAs 和 U 通过共同代谢物聚类在一起,两者都与磷酸肌醇磷酸代谢途径相关;金属还与能量代谢(iAs、MMA、DMA、U、W)和外来物质降解和代谢(DMA、Pb)途径中的代谢物相关。
在这项对多种金属和非靶向代谢组学的综合分析中,结果表明与脂肪酸、能量和氨基酸代谢途径存在共同关联。不同金属的个别代谢物关联结果不同,表明需要更大的人群来证实这里检测到的金属-金属相互作用,例如铀和无机砷的强烈相互作用。了解代谢稳态的生化网络及其与多种金属暴露的关联,可能有助于确定新的生物标志物、疾病途径和潜在的环境金属暴露特征。