Suppr超能文献

通过结合黎曼几何特征和偏最小二乘回归对同一上肢的多类运动想象 EEG 进行解码。

Decoding multiclass motor imagery EEG from the same upper limb by combining Riemannian geometry features and partial least squares regression.

机构信息

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, People's Republic of China. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, People's Republic of China. University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China.

出版信息

J Neural Eng. 2020 Aug 11;17(4):046029. doi: 10.1088/1741-2552/aba7cd.

Abstract

OBJECTIVE

Due to low spatial resolution and poor signal-to-noise ratio of electroencephalogram (EEG), high accuracy classifications still suffer from lots of obstacles in the context of motor imagery (MI)-based brain-machine interface (BMI) systems. Particularly, it is extremely challenging to decode multiclass MI EEG from the same upper limb. This research proposes a novel feature learning approach to address the classification problem of 6-class MI tasks, including imaginary elbow flexion/extension, wrist supination/pronation, and hand close/open within the unilateral upper limb.

APPROACH

Instead of the traditional common spatial pattern (CSP) or filter-bank CSP (FBCSP) manner, the Riemannian geometry (RG) framework involving Riemannian distance and Riemannian mean was directly adopted to extract tangent space (TS) features from spatial covariance matrices of the MI EEG trials. Subsequently, to reduce the dimensionality of the TS features, the algorithm of partial least squares regression was applied to obtain more separable and compact feature representations.

MAIN RESULTS

The performance of the learned RG feature representations was validated by a linear discriminative analysis and support vector machine classifier, with an average accuracy of 80.50% and 79.70% on EEG dataset collected from 12 participants, respectively.

SIGNIFICANCE

These results demonstrate that compared with CSP and FBCSP features, the proposed approach can significantly increase the decoding accuracy for multiclass MI tasks from the same upper limb. This approach is promising and could potentially be applied in the context of MI-based BMI control of a robotic arm or a neural prosthesis for motor disabled patients with highly impaired upper limb.

摘要

目的

由于脑电图(EEG)的空间分辨率低且信噪比差,基于运动想象(MI)的脑机接口(BMI)系统中的高精度分类仍然存在许多障碍。特别是,从同一上肢解码多类 MI-EEG 极其具有挑战性。本研究提出了一种新的特征学习方法,用于解决包括想象肘屈伸、腕旋前/旋后和手内收/外展在内的 6 类 MI 任务的分类问题,用于单侧上肢。

方法

与传统的公共空间模式(CSP)或滤波组 CSP(FBCSP)方法不同,直接采用涉及 MI-EEG 试验空间协方差矩阵的黎曼几何(RG)框架来提取切空间(TS)特征。随后,为了降低 TS 特征的维数,应用偏最小二乘回归算法来获得更可分离和紧凑的特征表示。

主要结果

通过线性判别分析和支持向量机分类器验证了学习的 RG 特征表示的性能,分别在 12 名参与者的 EEG 数据集上获得了 80.50%和 79.70%的平均准确率。

意义

这些结果表明,与 CSP 和 FBCSP 特征相比,所提出的方法可以显著提高来自同一上肢的多类 MI 任务的解码精度。该方法很有前途,可潜在应用于基于 MI 的 BMI 控制的机器人手臂或神经假体,为上肢严重受损的运动障碍患者提供帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验