Suppr超能文献

锥体神经元中的记忆保持:基于能量的同突触和异突触可塑性与内稳态的统一模型。

Memory retention in pyramidal neurons: a unified model of energy-based homo and heterosynaptic plasticity with homeostasis.

作者信息

Chen Huanwen, Xie Lijuan, Wang Yijun, Zhang Hang

机构信息

The School of Automation, Central South University, Changsha, 410083 Hunan China.

The Institute of Physiology and Psychology, Changsha University of Science and Technology, Changsha, 410076 Hunan China.

出版信息

Cogn Neurodyn. 2021 Aug;15(4):675-692. doi: 10.1007/s11571-020-09652-z. Epub 2020 Nov 17.

Abstract

The brain can learn new tasks without forgetting old ones. This memory retention is closely associated with the long-term stability of synaptic strength. To understand the capacity of pyramidal neurons to preserve memory under different tasks, we established a plasticity model based on the postsynaptic membrane energy state, in which the change in synaptic strength depends on the difference between the energy state after stimulation and the resting energy state. If the post-stimulation energy state is higher than the resting energy state, then synaptic depression occurs. On the contrary, the synapse is strengthened. Our model unifies homo- and heterosynaptic plasticity and can reproduce synaptic plasticity observed in multiple experiments, such as spike-timing-dependent plasticity, and cooperative plasticity with few and common parameters. Based on the proposed plasticity model, we conducted a simulation study on how the activation patterns of dendritic branches by different tasks affect the synaptic connection strength of pyramidal neurons. We further investigate the formation mechanism by which different tasks activate different dendritic branches. Simulation results show that compare to the classic plasticity model, the plasticity model we proposed can achieve a better spatial separation of different branches activated by different tasks in pyramidal neurons, which deepens our insight into the memory retention mechanism of brains.

摘要

大脑能够学习新任务而不会忘记旧任务。这种记忆保留与突触强度的长期稳定性密切相关。为了理解锥体神经元在不同任务下保持记忆的能力,我们基于突触后膜能量状态建立了一个可塑性模型,其中突触强度的变化取决于刺激后能量状态与静息能量状态之间的差异。如果刺激后能量状态高于静息能量状态,则发生突触抑制。相反,突触则得到增强。我们的模型统一了同突触和异突触可塑性,并且能够用很少且通用的参数重现多个实验中观察到的突触可塑性,如 spike-timing-dependent 可塑性和协同可塑性。基于所提出的可塑性模型,我们进行了一项模拟研究,探究不同任务对树突分支的激活模式如何影响锥体神经元的突触连接强度。我们进一步研究了不同任务激活不同树突分支的形成机制。模拟结果表明,与经典可塑性模型相比,我们提出的可塑性模型能够在锥体神经元中实现由不同任务激活的不同分支更好的空间分离,这加深了我们对大脑记忆保留机制的理解。

相似文献

3
Heterosynaptic plasticity prevents runaway synaptic dynamics.异突触可塑性可防止突触动力学失控。
J Neurosci. 2013 Oct 2;33(40):15915-29. doi: 10.1523/JNEUROSCI.5088-12.2013.
4
Postsynaptic Potential Energy as Determinant of Synaptic Plasticity.突触后电位能量作为突触可塑性的决定因素
Front Comput Neurosci. 2022 Feb 17;16:804604. doi: 10.3389/fncom.2022.804604. eCollection 2022.

本文引用的文献

2
Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits.树突棘的锥体神经元作为反馈调制的功能亚基。
PLoS Comput Biol. 2019 Mar 6;15(3):e1006757. doi: 10.1371/journal.pcbi.1006757. eCollection 2019 Mar.
3
Energy expenditure computation of a single bursting neuron.单个爆发神经元的能量消耗计算
Cogn Neurodyn. 2019 Feb;13(1):75-87. doi: 10.1007/s11571-018-9503-3. Epub 2018 Sep 3.
5
Alleviating catastrophic forgetting using context-dependent gating and synaptic stabilization.利用上下文相关门控和突触稳定缓解灾难性遗忘。
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10467-E10475. doi: 10.1073/pnas.1803839115. Epub 2018 Oct 12.
6
Plasticity of intrinsic neuronal excitability.内在神经元兴奋性的可塑性。
Curr Opin Neurobiol. 2019 Feb;54:73-82. doi: 10.1016/j.conb.2018.09.001. Epub 2018 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验