Suppr超能文献

用于训练多模态图像配准网络的单峰循环正则化

UNIMODAL CYCLIC REGULARIZATION FOR TRAINING MULTIMODAL IMAGE REGISTRATION NETWORKS.

作者信息

Xu Zhe, Yan Jiangpeng, Luo Jie, Wells William, Li Xiu, Jagadeesan Jayender

机构信息

Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Brigham and Women's Hospital, Harvard Medical School, Boston, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433926. Epub 2021 May 25.

Abstract

The loss function of an unsupervised multimodal image registration framework has two terms, i.e., a metric for similarity measure and regularization. In the deep learning era, researchers proposed many approaches to automatically learn the similarity metric, which has been shown effective in improving registration performance. However, for the regularization term, most existing multimodal registration approaches still use a hand-crafted formula to impose artificial properties on the estimated deformation field. In this work, we propose a unimodal cyclic regularization training pipeline, which learns task-specific prior knowledge from simpler unimodal registration, to constrain the deformation field of multimodal registration. In the experiment of abdominal CT-MR registration, the proposed method yields better results over conventional regularization methods, especially for severely deformed local regions.

摘要

无监督多模态图像配准框架的损失函数有两项,即用于相似性度量的指标和正则化项。在深度学习时代,研究人员提出了许多自动学习相似性度量的方法,这些方法已被证明在提高配准性能方面是有效的。然而,对于正则化项,大多数现有的多模态配准方法仍然使用手工公式对估计的变形场施加人为属性。在这项工作中,我们提出了一种单模态循环正则化训练管道,它从更简单的单模态配准中学习特定任务的先验知识,以约束多模态配准的变形场。在腹部CT-MR配准实验中,所提出的方法比传统正则化方法产生了更好的结果,特别是对于严重变形的局部区域。

相似文献

1
UNIMODAL CYCLIC REGULARIZATION FOR TRAINING MULTIMODAL IMAGE REGISTRATION NETWORKS.用于训练多模态图像配准网络的单峰循环正则化
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433926. Epub 2021 May 25.
2
Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration.用于多模态图像配准的对抗式单模态和多模态流网络
Med Image Comput Comput Assist Interv. 2020 Oct;12263:222-232. doi: 10.1007/978-3-030-59716-0_22. Epub 2020 Sep 29.
5
Geodesic active fields--a geometric framework for image registration.测地活动场--图像配准的一种几何框架。
IEEE Trans Image Process. 2011 May;20(5):1300-12. doi: 10.1109/TIP.2010.2093904. Epub 2010 Nov 18.
6
7
A Cooperative Autoencoder for Population-Based Regularization of CNN Image Registration.用于基于总体的卷积神经网络图像配准正则化的协作自编码器
Med Image Comput Comput Assist Interv. 2019 Oct;11765:391-400. doi: 10.1007/978-3-030-32245-8_44. Epub 2019 Oct 10.

本文引用的文献

1
2
Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration.用于多模态图像配准的对抗式单模态和多模态流网络
Med Image Comput Comput Assist Interv. 2020 Oct;12263:222-232. doi: 10.1007/978-3-030-59716-0_22. Epub 2020 Sep 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验