Suppr超能文献

基于深度学习的心脏图像配准的保间断正则化方法。

A discontinuity-preserving regularization for deep learning-based cardiac image registration.

机构信息

School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

出版信息

Phys Med Biol. 2023 May 3;68(9). doi: 10.1088/1361-6560/accdb1.

Abstract

. Sliding motion may occur between organs in anatomical regions due to respiratory motion and heart beating. This issue is often neglected in previous studies, resulting in poor image registration performance. A new approach is proposed to handle discontinuity at the boundary and improve registration accuracy.. The proposed discontinuity-preserving regularization (DPR) term can maintain local discontinuities. It leverages the segmentation mask to find organ boundaries and then relaxes the displacement field constraints in these boundary regions. A weakly supervised method using mask dissimilarity loss (MDL) is also proposed. It employs a simple formula to calculate the similarity between the fixed image mask and the deformed moving image mask. These two strategies are added to the loss function during network training to guide the model better to update parameters. Furthermore, during inference time, no segmentation mask information is needed.. Adding the proposed DPR term increases the Dice coefficients by 0.005, 0.009, and 0.081 for three existing registration neural networks CRNet, VoxelMorph, and ViT-V-Net, respectively. It also shows significant improvements in other metrics, including Hausdorff Distance and Average Surface Distance. All quantitative indicator results with MDL have been slightly improved within 1%. After applying these two regularization terms, the generated displacement field is more reasonable at the boundary, and the deformed moving image is closer to the fixed image.. This study demonstrates that the proposed regularization terms can effectively handle discontinuities at the boundaries of organs and improve the accuracy of deep learning-based cardiac image registration methods. Besides, they are generic to be extended to other networks.

摘要

器官在解剖学区域内可能会因呼吸运动和心跳而发生滑动运动。这一问题在以前的研究中经常被忽视,导致图像配准性能不佳。本文提出了一种新的方法来处理边界处的不连续性,提高配准精度。所提出的保边正则化(DPR)项可以保持局部不连续性。它利用分割掩模找到器官边界,然后在这些边界区域中放松位移场约束。还提出了一种使用掩模相似度损失(MDL)的弱监督方法。它使用一个简单的公式来计算固定图像掩模和变形运动图像掩模之间的相似度。这两个策略在网络训练期间被添加到损失函数中,以更好地指导模型更新参数。此外,在推理时,不需要分割掩模信息。

添加所提出的 DPR 项可将三个现有注册神经网络 CRNet、VoxelMorph 和 ViT-V-Net 的 Dice 系数分别提高 0.005、0.009 和 0.081。它在其他指标(包括 Hausdorff 距离和平均表面距离)上也显示出显著的改进。带有 MDL 的所有定量指标结果都在 1%以内略有提高。应用这两个正则化项后,边界处生成的位移场更加合理,变形后的运动图像更接近固定图像。

这项研究表明,所提出的正则化项可以有效地处理器官边界处的不连续性,提高基于深度学习的心脏图像配准方法的准确性。此外,它们可以通用地扩展到其他网络。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验