Suppr超能文献

用于多模态图像配准的对抗式单模态和多模态流网络

Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration.

作者信息

Xu Zhe, Luo Jie, Yan Jiangpeng, Pulya Ritvik, Li Xiu, Wells William, Jagadeesan Jayender

机构信息

Shenzhen International Graduate School, Tsinghua University, China.

Brigham and Women's Hospital, Harvard Medical School, USA.

出版信息

Med Image Comput Comput Assist Interv. 2020 Oct;12263:222-232. doi: 10.1007/978-3-030-59716-0_22. Epub 2020 Sep 29.

Abstract

Deformable image registration between Computed Tomography (CT) images and Magnetic Resonance (MR) imaging is essential for many image-guided therapies. In this paper, we propose a novel translation-based unsupervised deformable image registration method. Distinct from other translation-based methods that attempt to convert the multimodal problem (e.g., CT-to-MR) into a unimodal problem (e.g., MR-to-MR) via image-to-image translation, our method leverages the deformation fields estimated from both: (i) the translated MR image and (ii) the original CT image in a dual-stream fashion, and automatically learns how to fuse them to achieve better registration performance. The multimodal registration network can be effectively trained by computationally efficient similarity metrics without any ground-truth deformation. Our method has been evaluated on two clinical datasets and demonstrates promising results compared to state-of-the-art traditional and learning-based methods.

摘要

计算机断层扫描(CT)图像与磁共振(MR)成像之间的可变形图像配准对于许多图像引导治疗至关重要。在本文中,我们提出了一种基于平移的新型无监督可变形图像配准方法。与其他基于平移的方法不同,其他方法试图通过图像到图像的转换将多模态问题(例如,CT到MR)转换为单模态问题(例如,MR到MR),我们的方法以双流方式利用从以下两者估计的变形场:(i)平移后的MR图像和(ii)原始CT图像,并自动学习如何融合它们以实现更好的配准性能。多模态配准网络可以通过计算效率高的相似性度量进行有效训练,而无需任何地面真值变形。我们的方法已经在两个临床数据集上进行了评估,与当前最先进的传统方法和基于学习的方法相比,取得了有前景的结果。

相似文献

1
Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration.用于多模态图像配准的对抗式单模态和多模态流网络
Med Image Comput Comput Assist Interv. 2020 Oct;12263:222-232. doi: 10.1007/978-3-030-59716-0_22. Epub 2020 Sep 29.
3
Adversarial learning for mono- or multi-modal registration.对抗学习的单模态或多模态配准。
Med Image Anal. 2019 Dec;58:101545. doi: 10.1016/j.media.2019.101545. Epub 2019 Aug 24.
4
6
UNSUPERVISED MULTIMODAL IMAGE REGISTRATION WITH ADAPTATIVE GRADIENT GUIDANCE.基于自适应梯度引导的无监督多模态图像配准
Proc IEEE Int Conf Acoust Speech Signal Process. 2021 Jun;2021. doi: 10.1109/icassp39728.2021.9414320. Epub 2021 May 13.
7
UNIMODAL CYCLIC REGULARIZATION FOR TRAINING MULTIMODAL IMAGE REGISTRATION NETWORKS.用于训练多模态图像配准网络的单峰循环正则化
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021. doi: 10.1109/isbi48211.2021.9433926. Epub 2021 May 25.

引用本文的文献

3
DeepMesh: Mesh-Based Cardiac Motion Tracking Using Deep Learning.深网:基于网格的深度学习心脏运动跟踪。
IEEE Trans Med Imaging. 2024 Apr;43(4):1489-1500. doi: 10.1109/TMI.2023.3340118. Epub 2024 Apr 3.
9
A review of deep learning-based deformable medical image registration.基于深度学习的可变形医学图像配准综述。
Front Oncol. 2022 Dec 7;12:1047215. doi: 10.3389/fonc.2022.1047215. eCollection 2022.

本文引用的文献

5
Deformable Image Registration based on Similarity-Steered CNN Regression.基于相似性引导卷积神经网络回归的可变形图像配准
Med Image Comput Comput Assist Interv. 2017 Sep;10433:300-308. doi: 10.1007/978-3-319-66182-7_35. Epub 2017 Sep 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验