Systems Biology Research Center, University of Skövde, Sweden.
Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab569.
Biomedical data are becoming increasingly multimodal and thereby capture the underlying complex relationships among biological processes. Deep learning (DL)-based data fusion strategies are a popular approach for modeling these nonlinear relationships. Therefore, we review the current state-of-the-art of such methods and propose a detailed taxonomy that facilitates more informed choices of fusion strategies for biomedical applications, as well as research on novel methods. By doing so, we find that deep fusion strategies often outperform unimodal and shallow approaches. Additionally, the proposed subcategories of fusion strategies show different advantages and drawbacks. The review of current methods has shown that, especially for intermediate fusion strategies, joint representation learning is the preferred approach as it effectively models the complex interactions of different levels of biological organization. Finally, we note that gradual fusion, based on prior biological knowledge or on search strategies, is a promising future research path. Similarly, utilizing transfer learning might overcome sample size limitations of multimodal data sets. As these data sets become increasingly available, multimodal DL approaches present the opportunity to train holistic models that can learn the complex regulatory dynamics behind health and disease.
生物医学数据正变得越来越多模态,从而捕捉到生物过程之间潜在的复杂关系。基于深度学习(DL)的数据融合策略是建模这些非线性关系的一种流行方法。因此,我们回顾了这些方法的最新现状,并提出了一个详细的分类法,有助于更明智地选择生物医学应用的融合策略,以及对新方法的研究。通过这样做,我们发现深度融合策略通常优于单模态和浅层方法。此外,所提出的融合策略的子类显示出不同的优点和缺点。对现有方法的回顾表明,特别是对于中间融合策略,联合表示学习是首选方法,因为它可以有效地模拟不同层次的生物组织之间的复杂相互作用。最后,我们注意到,基于先前的生物学知识或搜索策略的渐进式融合是一个很有前途的未来研究方向。同样,利用迁移学习可能克服多模态数据集的样本量限制。随着这些数据集的日益普及,多模态 DL 方法提供了训练整体模型的机会,这些模型可以学习健康和疾病背后的复杂调节动态。
Brief Bioinform. 2022-3-10
Front Artif Intell. 2024-7-25
Brief Bioinform. 2023-9-20
BMC Med Inform Decis Mak. 2020-10-29
Comput Methods Programs Biomed. 2018-2-6
Neural Comput. 2020-5
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Front Pharmacol. 2025-8-20
Brief Bioinform. 2025-7-2
Information (Basel). 2025-1
BMC Bioinformatics. 2025-8-19
Precis Clin Med. 2025-7-17
Eur Heart J Digit Health. 2022-5-23
Cancer Cell. 2022-8-8
Comput Struct Biotechnol J. 2021-8-9
Sci Rep. 2021-6-29
Comput Struct Biotechnol J. 2021-5-1
Comput Biol Med. 2021-7