文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多模态深度学习在生物医学数据融合中的应用综述。

Multimodal deep learning for biomedical data fusion: a review.

机构信息

Systems Biology Research Center, University of Skövde, Sweden.

出版信息

Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab569.


DOI:10.1093/bib/bbab569
PMID:35089332
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8921642/
Abstract

Biomedical data are becoming increasingly multimodal and thereby capture the underlying complex relationships among biological processes. Deep learning (DL)-based data fusion strategies are a popular approach for modeling these nonlinear relationships. Therefore, we review the current state-of-the-art of such methods and propose a detailed taxonomy that facilitates more informed choices of fusion strategies for biomedical applications, as well as research on novel methods. By doing so, we find that deep fusion strategies often outperform unimodal and shallow approaches. Additionally, the proposed subcategories of fusion strategies show different advantages and drawbacks. The review of current methods has shown that, especially for intermediate fusion strategies, joint representation learning is the preferred approach as it effectively models the complex interactions of different levels of biological organization. Finally, we note that gradual fusion, based on prior biological knowledge or on search strategies, is a promising future research path. Similarly, utilizing transfer learning might overcome sample size limitations of multimodal data sets. As these data sets become increasingly available, multimodal DL approaches present the opportunity to train holistic models that can learn the complex regulatory dynamics behind health and disease.

摘要

生物医学数据正变得越来越多模态,从而捕捉到生物过程之间潜在的复杂关系。基于深度学习(DL)的数据融合策略是建模这些非线性关系的一种流行方法。因此,我们回顾了这些方法的最新现状,并提出了一个详细的分类法,有助于更明智地选择生物医学应用的融合策略,以及对新方法的研究。通过这样做,我们发现深度融合策略通常优于单模态和浅层方法。此外,所提出的融合策略的子类显示出不同的优点和缺点。对现有方法的回顾表明,特别是对于中间融合策略,联合表示学习是首选方法,因为它可以有效地模拟不同层次的生物组织之间的复杂相互作用。最后,我们注意到,基于先前的生物学知识或搜索策略的渐进式融合是一个很有前途的未来研究方向。同样,利用迁移学习可能克服多模态数据集的样本量限制。随着这些数据集的日益普及,多模态 DL 方法提供了训练整体模型的机会,这些模型可以学习健康和疾病背后的复杂调节动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/74ed992dc5f2/bbab569f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/2876f9f9e363/bbab569f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/0a8931d10364/bbab569f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/d74eadee37bb/bbab569f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/74ed992dc5f2/bbab569f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/2876f9f9e363/bbab569f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/0a8931d10364/bbab569f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/d74eadee37bb/bbab569f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/463a/8921642/74ed992dc5f2/bbab569f4.jpg

相似文献

[1]
Multimodal deep learning for biomedical data fusion: a review.

Brief Bioinform. 2022-3-10

[2]
Multimodal data integration for oncology in the era of deep neural networks: a review.

Front Artif Intell. 2024-7-25

[3]
Multimodal deep learning approaches for single-cell multi-omics data integration.

Brief Bioinform. 2023-9-20

[4]
Combining structured and unstructured data for predictive models: a deep learning approach.

BMC Med Inform Decis Mak. 2020-10-29

[5]
A novel biomedical image indexing and retrieval system via deep preference learning.

Comput Methods Programs Biomed. 2018-2-6

[6]
A Survey on Deep Learning for Multimodal Data Fusion.

Neural Comput. 2020-5

[7]
Artificial intelligence-based methods for fusion of electronic health records and imaging data.

Sci Rep. 2022-10-26

[8]
A review of deep learning-based information fusion techniques for multimodal medical image classification.

Comput Biol Med. 2024-7

[9]
Deep Learning Approach for Multimodal Biometric Recognition System Based on Fusion of Iris, Face, and Finger Vein Traits.

Sensors (Basel). 2020-9-27

[10]
Multimodal Data Fusion of Deep Learning and Dynamic Functional Connectivity Features to Predict Alzheimer's Disease Progression.

Annu Int Conf IEEE Eng Med Biol Soc. 2019-7

引用本文的文献

[1]
Multimodal integration strategies for clinical application in oncology.

Front Pharmacol. 2025-8-20

[2]
A Cross-Modal Mutual Knowledge Distillation Framework for Alzheimer's Disease Diagnosis: Addressing Incomplete Modalities.

IEEE Trans Autom Sci Eng. 2025

[3]
Deep learning-driven multi-omics analysis: enhancing cancer diagnostics and therapeutics.

Brief Bioinform. 2025-7-2

[4]
Multi-Modal Fusion of Routine Care Electronic Health Records (EHR): A Scoping Review.

Information (Basel). 2025-1

[5]
Autoencoders with shared and specific embeddings for multi-omics data integration.

BMC Bioinformatics. 2025-8-19

[6]
AI-assisted multi-modal information for the screening of depression: a systematic review and meta-analysis.

NPJ Digit Med. 2025-8-16

[7]
Computational ranking identifies Plexin-B2 in circulating tumor cell clustering with monocytes in breast cancer metastasis.

Nat Commun. 2025-8-16

[8]
HallmarkGraph: a cancer hallmark informed graph neural network for classifying hierarchical tumor subtypes.

Bioinformatics. 2025-9-1

[9]
Utilizing multimodal artificial intelligence to advance cardiovascular diseases.

Precis Clin Med. 2025-7-17

[10]
Combining Real and Synthetic Data to Overcome Limited Training Datasets in Multimodal Learning.

medRxiv. 2025-7-17

本文引用的文献

[1]
Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy.

Eur Heart J Digit Health. 2022-5-23

[2]
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.

Cancer Cell. 2022-8-8

[3]
Cancer: A deep learning-based pan-cancer metastasis prediction model developed using multi-omics data.

Comput Struct Biotechnol J. 2021-8-9

[4]
Robust Prognostic Subtyping of Muscle-Invasive Bladder Cancer Revealed by Deep Learning-Based Multi-Omics Data Integration.

Front Oncol. 2021-8-6

[5]
Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery.

Brief Bioinform. 2021-11-5

[6]
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.

Genome Med. 2021-7-14

[7]
Long-term cancer survival prediction using multimodal deep learning.

Sci Rep. 2021-6-29

[8]
DeepOmix: A scalable and interpretable multi-omics deep learning framework and application in cancer survival analysis.

Comput Struct Biotechnol J. 2021-5-1

[9]
Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.

Comput Biol Med. 2021-7

[10]
AI-based pathology predicts origins for cancers of unknown primary.

Nature. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索