Suppr超能文献

基于图表示学习的药物重定位的有效多任务学习框架。

An effective multi-task learning framework for drug repurposing based on graph representation learning.

机构信息

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China.

Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China.

出版信息

Methods. 2023 Oct;218:48-56. doi: 10.1016/j.ymeth.2023.07.008. Epub 2023 Jul 27.

Abstract

Drug repurposing, which typically applies the procedure of drug-disease associations (DDAs) prediction, is a feasible solution to drug discovery. Compared with traditional methods, drug repurposing can reduce the cost and time for drug development and advance the success rate of drug discovery. Although many methods for drug repurposing have been proposed and the obtained results are relatively acceptable, there is still some room for improving the predictive performance, since those methods fail to consider fully the issue of sparseness in known drug-disease associations. In this paper, we propose a novel multi-task learning framework based on graph representation learning to identify DDAs for drug repurposing. In our proposed framework, a heterogeneous information network is first constructed by combining multiple biological datasets. Then, a module consisting of multiple layers of graph convolutional networks is utilized to learn low-dimensional representations of nodes in the constructed heterogeneous information network. Finally, two types of auxiliary tasks are designed to help to train the target task of DDAs prediction in the multi-task learning framework. Comprehensive experiments are conducted on real data and the results demonstrate the effectiveness of the proposed method for drug repurposing.

摘要

药物重定位,通常应用药物-疾病关联(DDA)预测的方法,是药物发现的可行解决方案。与传统方法相比,药物重定位可以降低药物开发的成本和时间,并提高药物发现的成功率。尽管已经提出了许多药物重定位的方法,并且得到的结果相对可以接受,但仍然有一些改进预测性能的空间,因为这些方法没有充分考虑到已知药物-疾病关联的稀疏性问题。在本文中,我们提出了一种基于图表示学习的新的多任务学习框架,用于识别药物重定位的 DDA。在我们提出的框架中,首先通过结合多个生物数据集来构建一个异构信息网络。然后,利用由多个图卷积网络层组成的模块来学习构建的异构信息网络中节点的低维表示。最后,设计了两种辅助任务来帮助多任务学习框架中的 DDA 预测目标任务的训练。在真实数据上进行了全面的实验,结果表明该方法在药物重定位方面是有效的。

相似文献

9
Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network.基于图卷积网络的伴侣特异性药物再定位方法。
IEEE J Biomed Health Inform. 2022 Nov;26(11):5757-5765. doi: 10.1109/JBHI.2022.3194891. Epub 2022 Nov 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验