Suppr超能文献

基于生物特征和异质网络表示学习的药物-靶标相互作用预测框架。

A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction.

机构信息

College of Science, Dalian Jiaotong University, Dalian 116028, China.

Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China.

出版信息

Molecules. 2023 Sep 9;28(18):6546. doi: 10.3390/molecules28186546.

Abstract

The prediction of drug-target interaction (DTI) is crucial to drug discovery. Although the interactions between the drug and target can be accurately verified by traditional biochemical experiments, the determination of DTI through biochemical experiments is a time-consuming, laborious, and expensive process. Therefore, we propose a learning-based framework named BG-DTI for drug-target interaction prediction. Our model combines two main approaches based on biological features and heterogeneous networks to identify interactions between drugs and targets. First, we extract original features from the sequence to encode each drug and target. Later, we further consider the relationships among various biological entities by constructing drug-drug similarity networks and target-target similarity networks. Furthermore, a graph convolutional network and a graph attention network in the graph representation learning module help us learn the features representation of drugs and targets. After obtaining the features from graph representation learning modules, these features are combined into fusion descriptors for drug-target pairs. Finally, we send the fusion descriptors and labels to a random forest classifier for predicting DTI. The evaluation results show that BG-DTI achieves an average AUC of 0.938 and an average AUPR of 0.930, which is better than those of five existing state-of-the-art methods. We believe that BG-DTI can facilitate the development of drug discovery or drug repurposing.

摘要

药物-靶标相互作用(DTI)的预测对于药物发现至关重要。尽管药物和靶标之间的相互作用可以通过传统的生化实验准确验证,但通过生化实验确定 DTI 是一个耗时、费力且昂贵的过程。因此,我们提出了一种名为 BG-DTI 的基于学习的框架,用于药物-靶标相互作用预测。我们的模型结合了基于生物学特征和异质网络的两种主要方法,以识别药物和靶标之间的相互作用。首先,我们从序列中提取原始特征,对每个药物和靶标进行编码。然后,我们通过构建药物-药物相似性网络和靶标-靶标相似性网络进一步考虑各种生物实体之间的关系。此外,图表示学习模块中的图卷积网络和图注意网络帮助我们学习药物和靶标的特征表示。从图表示学习模块获得特征后,将这些特征组合成药物-靶标对的融合描述符。最后,我们将融合描述符和标签发送到随机森林分类器进行 DTI 预测。评估结果表明,BG-DTI 的平均 AUC 为 0.938,平均 AUPR 为 0.930,优于五种现有的最先进方法。我们相信 BG-DTI 可以促进药物发现或药物再利用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26ec/10535805/facab74e6267/molecules-28-06546-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验