Suppr超能文献

ImageJ 生态系统中的新可扩展性和脚本工具。

New Extensibility and Scripting Tools in the ImageJ Ecosystem.

机构信息

Laboratory for Optical and Computational Instrumentation (LOCI), Center for Quantitative Cell Imaging, University of Wisconsin at Madison, Madison, Wisconsin.

Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin.

出版信息

Curr Protoc. 2021 Aug;1(8):e204. doi: 10.1002/cpz1.204.

Abstract

ImageJ provides a framework for image processing across scientific domains while being fully open source. Over the years ImageJ has been substantially extended to support novel applications in scientific imaging as they emerge, particularly in the area of biological microscopy, with functionality made more accessible via the Fiji distribution of ImageJ. Within this software ecosystem, work has been done to extend the accessibility of ImageJ to utilize scripting, macros, and plugins in a variety of programming scenarios, e.g., from Groovy and Python and in Jupyter notebooks and cloud computing. We provide five protocols that demonstrate the extensibility of ImageJ for various workflows in image processing. We focus first on Fluorescence Lifetime Imaging Microscopy (FLIM) data, since this requires significant processing to provide quantitative insights into the microenvironments of cells. Second, we show how ImageJ can now be utilized for common image processing techniques, specifically image deconvolution and inversion, while highlighting the new, built-in features of ImageJ-particularly its capacity to run completely headless and the Ops matching feature that selects the optimal algorithm for a given function and data input, thereby enabling processing speedup. Collectively, these protocols can be used as a basis for automating biological image processing workflows. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Using PyImageJ for FLIM data processing Alternate Protocol: Groovy FLIMJ in Jupyter Notebooks Basic Protocol 2: Using ImageJ Ops for image deconvolution Support Protocol 1: Using ImageJ Ops matching feature for image inversion Support Protocol 2: Headless ImageJ deconvolution.

摘要

ImageJ 为跨科学领域的图像处理提供了一个框架,同时它也是完全开源的。多年来,ImageJ 已经得到了实质性的扩展,以支持新兴科学成像领域的新应用,特别是在生物显微镜领域,通过 Fiji 对 ImageJ 的分发,其功能变得更加易于使用。在这个软件生态系统中,已经做了很多工作来扩展 ImageJ 的可访问性,以便在各种编程场景中使用脚本、宏和插件,例如在 Groovy 和 Python 中,以及在 Jupyter 笔记本和云计算中。我们提供了五个协议,展示了 ImageJ 在图像处理各种工作流程中的可扩展性。我们首先关注荧光寿命成像显微镜 (FLIM) 数据,因为这需要大量的处理才能提供对细胞微环境的定量见解。其次,我们展示了如何现在可以利用 ImageJ 进行常见的图像处理技术,特别是图像去卷积和反转,同时突出显示 ImageJ 的新内置功能-特别是其完全无头运行的能力和 Ops 匹配功能,该功能为给定的函数和数据输入选择最佳算法,从而实现处理速度的提升。总的来说,这些协议可以用作自动化生物图像处理工作流程的基础。© 2021 威立出版社有限责任公司。基础协议 1:使用 PyImageJ 进行 FLIM 数据处理可选协议:在 Jupyter 笔记本中使用 Groovy FLIMJ 基础协议 2:使用 ImageJ Ops 进行图像去卷积支持协议 1:使用 ImageJ Ops 匹配功能进行图像反转支持协议 2:无头 ImageJ 去卷积。

相似文献

1
New Extensibility and Scripting Tools in the ImageJ Ecosystem.
Curr Protoc. 2021 Aug;1(8):e204. doi: 10.1002/cpz1.204.
2
FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis.
PLoS One. 2020 Dec 30;15(12):e0238327. doi: 10.1371/journal.pone.0238327. eCollection 2020.
4
The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis.
Protein Sci. 2021 Jan;30(1):234-249. doi: 10.1002/pro.3993. Epub 2020 Nov 20.
5
The ImageJ ecosystem: An open platform for biomedical image analysis.
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. doi: 10.1002/mrd.22489. Epub 2015 Jul 7.
6
Basic Image Analysis and Manipulation in ImageJ/Fiji.
Curr Protoc. 2023 Jul;3(7):e849. doi: 10.1002/cpz1.849.
7
ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinformatics. 2017 Nov 29;18(1):529. doi: 10.1186/s12859-017-1934-z.
8
Integration of the ImageJ Ecosystem in the KNIME Analytics Platform.
Front Comput Sci. 2020 Mar;2. doi: 10.3389/fcomp.2020.00008. Epub 2020 Mar 17.
9
IQM: an extensible and portable open source application for image and signal analysis in Java.
PLoS One. 2015 Jan 22;10(1):e0116329. doi: 10.1371/journal.pone.0116329. eCollection 2015.
10
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.

引用本文的文献

1
Digital image processing: A new tool for morphological measurements of freshwater turtles under rehabilitation.
PLoS One. 2024 Mar 14;19(3):e0300253. doi: 10.1371/journal.pone.0300253. eCollection 2024.
3
Acute oral toxicity, apoptosis, and immune response in nurse bees () induced by flupyradifurone.
Front Physiol. 2023 Mar 28;14:1150340. doi: 10.3389/fphys.2023.1150340. eCollection 2023.

本文引用的文献

1
FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis.
PLoS One. 2020 Dec 30;15(12):e0238327. doi: 10.1371/journal.pone.0238327. eCollection 2020.
2
BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows.
Patterns (N Y). 2020 Jun 3;1(3):100040. doi: 10.1016/j.patter.2020.100040. eCollection 2020 Jun 12.
3
The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis.
Protein Sci. 2021 Jan;30(1):234-249. doi: 10.1002/pro.3993. Epub 2020 Nov 20.
4
Array programming with NumPy.
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.
5
Integration of the ImageJ Ecosystem in the KNIME Analytics Platform.
Front Comput Sci. 2020 Mar;2. doi: 10.3389/fcomp.2020.00008. Epub 2020 Mar 17.
6
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
7
ImJoy: an open-source computational platform for the deep learning era.
Nat Methods. 2019 Dec;16(12):1199-1200. doi: 10.1038/s41592-019-0627-0.
8
Scientific Community Image Forum: A discussion forum for scientific image software.
PLoS Biol. 2019 Jun 19;17(6):e3000340. doi: 10.1371/journal.pbio.3000340. eCollection 2019 Jun.
9
Why Jupyter is data scientists' computational notebook of choice.
Nature. 2018 Nov;563(7729):145-146. doi: 10.1038/d41586-018-07196-1.
10
HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.
J Virol. 2018 Mar 14;92(7). doi: 10.1128/JVI.02102-17. Print 2018 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验