Suppr超能文献

非线性概率加权能够反映序列抽样中的注意偏差。

Nonlinear probability weighting can reflect attentional biases in sequential sampling.

作者信息

Zilker Veronika, Pachur Thorsten

机构信息

Center for Adaptive Rationality.

出版信息

Psychol Rev. 2022 Oct;129(5):949-975. doi: 10.1037/rev0000304. Epub 2021 Aug 9.

Abstract

Nonlinear probability weighting allows cumulative prospect theory (CPT) to account for key phenomena in decision making under risk (e.g., certainty effect, fourfold pattern of risk attitudes). It describes the impact of risky outcomes on preferences in terms of a rank-dependent nonlinear transformation of their objective probabilities. The attentional Drift Diffusion Model (aDDM) formalizes the finding that attentional biases toward an option can shape preferences within a sequential sampling process. Here we link these two influential frameworks. We used the aDDM to simulate choices between two options while systematically varying the strength of attentional biases to either option. The resulting choices were modeled with CPT. Changes in preference due to attentional biases in the aDDM were reflected in highly systematic signatures in the parameters of CPT's weighting function (curvature, elevation). In a re-analysis of a large set of previously published data, we demonstrate that attentional biases are also empirically linked to patterns in probability weighting as suggested by the simulations. Our analyses also revealed a previously overlooked link between patterns in probability weighting and response times. These findings highlight that distortions in probability weighting can arise from simple option-specific attentional biases in information search, and suggest an alternative to common interpretations of weighting-function parameters in terms of probability sensitivity and optimism. They also point to novel, attention-based explanations for empirical phenomena associated with characteristic shapes of CPT's probability-weighting function (e.g., certainty effect, description-experience gap). The results advance the integration of two prominent computational frameworks for decision making. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

非线性概率加权使累积前景理论(CPT)能够解释风险决策中的关键现象(如确定性效应、风险态度的四重模式)。它根据风险结果客观概率的等级依赖非线性变换来描述风险结果对偏好的影响。注意力漂移扩散模型(aDDM)将这样一个发现形式化,即对一个选项的注意力偏差可以在顺序抽样过程中塑造偏好。在这里,我们将这两个有影响力的框架联系起来。我们使用aDDM来模拟在两个选项之间的选择,同时系统地改变对任一选项的注意力偏差强度。由此产生的选择用CPT进行建模。aDDM中由于注意力偏差导致的偏好变化反映在CPT加权函数参数(曲率、高度)的高度系统特征中。在对大量先前发表的数据进行重新分析时,我们证明,如模拟所示,注意力偏差在经验上也与概率加权模式相关。我们的分析还揭示了概率加权模式与反应时间之间一个先前被忽视的联系。这些发现突出表明,概率加权中的扭曲可能源于信息搜索中简单的特定选项注意力偏差,并为根据概率敏感性和乐观性对加权函数参数的常见解释提供了一种替代方案。它们还为与CPT概率加权函数的特征形状相关的经验现象(如确定性效应、描述 - 经验差距)指出了基于注意力的新颖解释。这些结果推进了两个突出的决策计算框架的整合。(PsycInfo数据库记录(c)2022美国心理学会,保留所有权利)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验