Suppr超能文献

EBCR:基于经验贝叶斯一致性比的方法提高基于记忆的协同过滤中的相似性度量。

EBCR: Empirical Bayes concordance ratio method to improve similarity measurement in memory-based collaborative filtering.

机构信息

EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France.

UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

出版信息

PLoS One. 2021 Aug 9;16(8):e0255929. doi: 10.1371/journal.pone.0255929. eCollection 2021.

Abstract

Recommender systems aim to provide users with a selection of items, based on predicting their preferences for items they have not yet rated, thus helping them filter out irrelevant ones from a large product catalogue. Collaborative filtering is a widely used mechanism to predict a particular user's interest in a given item, based on feedback from neighbour users with similar tastes. The way the user's neighbourhood is identified has a significant impact on prediction accuracy. Most methods estimate user proximity from ratings they assigned to co-rated items, regardless of their number. This paper introduces a similarity adjustment taking into account the number of co-ratings. The proposed method is based on a concordance ratio representing the probability that two users share the same taste for a new item. The probabilities are further adjusted by using the Empirical Bayes inference method before being used to weight similarities. The proposed approach improves existing similarity measures without increasing time complexity and the adjustment can be combined with all existing similarity measures. Experiments conducted on benchmark datasets confirmed that the proposed method systematically improved the recommender system's prediction accuracy performance for all considered similarity measures.

摘要

推荐系统旨在根据预测用户对他们尚未评价过的项目的偏好,为用户提供项目选择,从而帮助他们从大型产品目录中筛选出不相关的项目。协同过滤是一种广泛使用的机制,用于根据具有相似口味的邻居用户的反馈来预测特定用户对给定项目的兴趣。识别用户邻居的方式对预测准确性有重大影响。大多数方法都根据用户对共同评分项目的评分来估计用户的相似度,而不考虑评分的数量。本文提出了一种考虑共同评分数量的相似度调整方法。所提出的方法基于一致性比率,代表两个用户对新项目具有相同品味的概率。在用于加权相似度之前,使用经验贝叶斯推断方法进一步调整这些概率。该方法在不增加时间复杂度的情况下改进了现有的相似度度量,并且可以与所有现有的相似度度量相结合。在基准数据集上进行的实验证实,所提出的方法系统地提高了所有考虑的相似度度量的推荐系统的预测准确性性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验