Suppr超能文献

EBCR:基于经验贝叶斯一致性比的方法提高基于记忆的协同过滤中的相似性度量。

EBCR: Empirical Bayes concordance ratio method to improve similarity measurement in memory-based collaborative filtering.

机构信息

EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France.

UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France.

出版信息

PLoS One. 2021 Aug 9;16(8):e0255929. doi: 10.1371/journal.pone.0255929. eCollection 2021.

Abstract

Recommender systems aim to provide users with a selection of items, based on predicting their preferences for items they have not yet rated, thus helping them filter out irrelevant ones from a large product catalogue. Collaborative filtering is a widely used mechanism to predict a particular user's interest in a given item, based on feedback from neighbour users with similar tastes. The way the user's neighbourhood is identified has a significant impact on prediction accuracy. Most methods estimate user proximity from ratings they assigned to co-rated items, regardless of their number. This paper introduces a similarity adjustment taking into account the number of co-ratings. The proposed method is based on a concordance ratio representing the probability that two users share the same taste for a new item. The probabilities are further adjusted by using the Empirical Bayes inference method before being used to weight similarities. The proposed approach improves existing similarity measures without increasing time complexity and the adjustment can be combined with all existing similarity measures. Experiments conducted on benchmark datasets confirmed that the proposed method systematically improved the recommender system's prediction accuracy performance for all considered similarity measures.

摘要

推荐系统旨在根据预测用户对他们尚未评价过的项目的偏好,为用户提供项目选择,从而帮助他们从大型产品目录中筛选出不相关的项目。协同过滤是一种广泛使用的机制,用于根据具有相似口味的邻居用户的反馈来预测特定用户对给定项目的兴趣。识别用户邻居的方式对预测准确性有重大影响。大多数方法都根据用户对共同评分项目的评分来估计用户的相似度,而不考虑评分的数量。本文提出了一种考虑共同评分数量的相似度调整方法。所提出的方法基于一致性比率,代表两个用户对新项目具有相同品味的概率。在用于加权相似度之前,使用经验贝叶斯推断方法进一步调整这些概率。该方法在不增加时间复杂度的情况下改进了现有的相似度度量,并且可以与所有现有的相似度度量相结合。在基准数据集上进行的实验证实,所提出的方法系统地提高了所有考虑的相似度度量的推荐系统的预测准确性性能。

相似文献

1
EBCR: Empirical Bayes concordance ratio method to improve similarity measurement in memory-based collaborative filtering.
PLoS One. 2021 Aug 9;16(8):e0255929. doi: 10.1371/journal.pone.0255929. eCollection 2021.
2
Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems.
PLoS One. 2019 Aug 1;14(8):e0220129. doi: 10.1371/journal.pone.0220129. eCollection 2019.
3
Enhancing the scalability of distance-based link prediction algorithms in recommender systems through similarity selection.
PLoS One. 2022 Jul 28;17(7):e0271891. doi: 10.1371/journal.pone.0271891. eCollection 2022.
4
Users' Rating Predictions Using Collaborating Filtering Based on Users and Items Similarity Measures.
Comput Intell Neurosci. 2022 Jul 8;2022:2347641. doi: 10.1155/2022/2347641. eCollection 2022.
5
An improved memory-based collaborative filtering method based on the TOPSIS technique.
PLoS One. 2018 Oct 4;13(10):e0204434. doi: 10.1371/journal.pone.0204434. eCollection 2018.
6
Efficient Graph Collaborative Filtering via Contrastive Learning.
Sensors (Basel). 2021 Jul 7;21(14):4666. doi: 10.3390/s21144666.
7
An Approach to Integrating Sentiment Analysis into Recommender Systems.
Sensors (Basel). 2021 Aug 23;21(16):5666. doi: 10.3390/s21165666.
9
Accurate and scalable social recommendation using mixed-membership stochastic block models.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14207-14212. doi: 10.1073/pnas.1606316113. Epub 2016 Nov 23.
10
An improved collaborative filtering method based on similarity.
PLoS One. 2018 Sep 24;13(9):e0204003. doi: 10.1371/journal.pone.0204003. eCollection 2018.

本文引用的文献

1
Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems.
PLoS One. 2019 Aug 1;14(8):e0220129. doi: 10.1371/journal.pone.0220129. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验