Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark.
Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Solna SE-171 65, Sweden.
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2025320118.
The voltage-gated sodium channel Na1.5 initiates the cardiac action potential. Alterations of its activation and inactivation properties due to mutations can cause severe, life-threatening arrhythmias. Yet despite intensive research efforts, many functional aspects of this cardiac channel remain poorly understood. For instance, Na1.5 undergoes extensive posttranslational modification in vivo, but the functional significance of these modifications is largely unexplored, especially under pathological conditions. This is because most conventional approaches are unable to insert metabolically stable posttranslational modification mimics, thus preventing a precise elucidation of the contribution by these modifications to channel function. Here, we overcome this limitation by using protein semisynthesis of Na1.5 in live cells and carry out complementary molecular dynamics simulations. We introduce metabolically stable phosphorylation mimics on both wild-type (WT) and two pathogenic long-QT mutant channel backgrounds and decipher functional and pharmacological effects with unique precision. We elucidate the mechanism by which phosphorylation of Y1495 impairs steady-state inactivation in WT Na1.5. Surprisingly, we find that while the Q1476R patient mutation does not affect inactivation on its own, it enhances the impairment of steady-state inactivation caused by phosphorylation of Y1495 through enhanced unbinding of the inactivation particle. We also show that both phosphorylation and patient mutations can impact Na1.5 sensitivity toward the clinically used antiarrhythmic drugs quinidine and ranolazine, but not flecainide. The data highlight that functional effects of Na1.5 phosphorylation can be dramatically amplified by patient mutations. Our work is thus likely to have implications for the interpretation of mutational phenotypes and the design of future drug regimens.
电压门控钠离子通道 Na1.5 引发心脏动作电位。由于突变导致其激活和失活特性的改变可能会引起严重的、危及生命的心律失常。然而,尽管进行了大量的研究工作,但这种心脏通道的许多功能方面仍未得到很好的理解。例如,Na1.5 在体内经历广泛的翻译后修饰,但这些修饰的功能意义在很大程度上尚未得到探索,尤其是在病理条件下。这是因为大多数传统方法无法插入代谢稳定的翻译后修饰模拟物,从而无法准确阐明这些修饰对通道功能的贡献。在这里,我们通过在活细胞中使用 Na1.5 的蛋白质半合成来克服这一限制,并进行互补的分子动力学模拟。我们在野生型 (WT) 和两种致病长 QT 突变通道背景下引入代谢稳定的磷酸化模拟物,并以独特的精度解析功能和药理学效应。我们阐明了 Y1495 磷酸化如何损害 WT Na1.5 的稳态失活的机制。令人惊讶的是,我们发现虽然 Q1476R 患者突变本身不会影响失活,但它通过增强失活粒子的非结合,增强了 Y1495 磷酸化对稳态失活的损害。我们还表明,磷酸化和患者突变都可以影响 Na1.5 对临床使用的抗心律失常药物奎尼丁和雷诺嗪的敏感性,但对氟卡尼没有影响。这些数据表明,Na1.5 磷酸化的功能效应可以通过患者突变显著放大。因此,我们的工作可能对解释突变表型和设计未来的药物方案具有重要意义。