Department of Chemistry, McGill University, Montréal, Québec, Canada.
Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada.
Nat Chem. 2021 Sep;13(9):843-849. doi: 10.1038/s41557-021-00751-w. Epub 2021 Aug 9.
Biochemical networks interconnect, grow and evolve to express new properties as different chemical pathways are selected during a continuous cycle of energy consumption and transformation. In contrast, synthetic systems that push away from equilibrium usually return to the same self-assembled state, often generating waste that limits system recyclability and prevents the formation of adaptable networks. Here we show that annealing by slow proton dissipation selects for otherwise inaccessible morphologies of fibres built from DNA and cyanuric acid. Using single-molecule fluorescence microscopy, we observe that proton dissipation influences the growth mechanism of supramolecular polymerization, healing gaps within fibres and converting highly branched, interwoven networks into nanocable superstructures. Just as the growth kinetics of natural fibres determine their structural attributes to modulate function, our system of photoacid-enabled depolymerization and repolymerization selects for healed materials to yield organized, robust fibres. Our method provides a chemical route for error-checking, distinct from thermal annealing, that improves the morphologies and properties of supramolecular materials using out-of-equilibrium systems.
生化网络相互连接、生长和进化,以表达新的特性,因为在不断的能量消耗和转化循环中,不同的化学途径被选择。相比之下,远离平衡的合成系统通常会回到相同的自组装状态,通常会产生废物,限制系统的可回收性,并阻止适应性网络的形成。在这里,我们表明,通过缓慢质子耗散的退火可以选择由 DNA 和三聚氰胺构建的纤维的其他不可访问的形态。使用单分子荧光显微镜,我们观察到质子耗散会影响超分子聚合的生长机制,修复纤维内的间隙,并将高度分支、交织的网络转化为纳米电缆超结构。就像天然纤维的生长动力学决定了它们的结构属性以调节功能一样,我们的光酸使解聚和再聚合的系统选择愈合的材料来产生有组织的、坚固的纤维。我们的方法提供了一种化学途径进行错误检查,与热退火不同,它使用非平衡系统来改善超分子材料的形态和性能。