Suppr超能文献

ATP 驱动的非平衡 DNA 系统中的可编程动态稳定状态。

Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems.

机构信息

Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany.

Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany.

出版信息

Sci Adv. 2019 Jul 19;5(7):eaaw0590. doi: 10.1126/sciadv.aaw0590. eCollection 2019 Jul.

Abstract

Inspired by the dynamics of the dissipative self-assembly of microtubules, chemically fueled synthetic systems with transient lifetimes are emerging for nonequilibrium materials design. However, realizing programmable or even adaptive structural dynamics has proven challenging because it requires synchronization of energy uptake and dissipation events within true steady states, which remains difficult to orthogonally control in supramolecular systems. Here, we demonstrate full synchronization of both events by ATP-fueled activation and dynamization of covalent DNA bonds via an enzymatic reaction network of concurrent ligation and cleavage. Critically, the average bond ratio and the frequency of bond exchange are imprinted into the energy dissipation kinetics of the network and tunable through its constituents. We introduce temporally and structurally programmable dynamics by polymerization of transient, dynamic covalent DNA polymers with adaptive steady-state properties in dependence of ATP fuel and enzyme concentrations. This approach enables generic access to nonequilibrium soft matter systems with adaptive and programmable dynamics.

摘要

受微管耗散自组装动力学的启发,具有瞬态寿命的化学燃料合成系统正在出现,用于非平衡材料设计。然而,实现可编程甚至自适应结构动力学一直具有挑战性,因为它需要在真正的稳态中同步能量吸收和耗散事件,这在超分子系统中仍然难以正交控制。在这里,我们通过酶反应网络的同时连接和切割,展示了通过 ATP 驱动的激活和共价 DNA 键的动态化,对这两个事件进行完全同步。关键的是,平均键比和键交换的频率被印刻到网络的能量耗散动力学中,并可以通过其成分进行调节。我们通过瞬态动态共价 DNA 聚合物的聚合,引入了具有自适应稳态特性的时间和结构可编程动力学,这取决于 ATP 燃料和酶浓度。这种方法为具有自适应和可编程动力学的非平衡软物质系统提供了通用的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验