Forbes Patrick A, Chen Anthony, Blouin Jean-Sébastien
Department of Neuroscience, Erasmus Medical Centre, Rotterdam, The Netherlands.
School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.
Handb Clin Neurol. 2018;159:61-83. doi: 10.1016/B978-0-444-63916-5.00004-5.
For most individuals, balancing upright is a simple task that requires little effort. The inherent difficulties associated with standing balance are not revealed until a pathology or injury impairs its control. Fundamentally, standing upright requires us to balance our unstable whole-body load within a small base of support. Small movements of the upright body are detected by various sensory receptors, all encoding these movements through their own coordinate system with specific dynamics. The balance controller filters, processes, and integrates sensory cues of body motion to produce an error signal between predicted and actual sensory consequences of balance-related movements. Compensatory motor commands are generated in response to this error to maintain upright standing. In the present review, we first briefly describe the biomechanics and sensor dynamics of standing balance. We further review sensorimotor and perceptual approaches revealing operational principles of the balance system, along with computational approaches that explore control processes underlying upright stance. Finally, we present robotic tools that virtualize the sensory consequences, biomechanics, and/or environmental factors inherent to the standing balance task. Throughout, we emphasize works that combine sensorimotor, computational, and/or robotics approaches to highlight the task dependency, multisensory cue combinations, cortical-subcortical contributions, and internal representations underpinning balance control.
对于大多数人来说,保持直立平衡是一项简单的任务,无需付出太多努力。与站立平衡相关的内在困难直到病理状况或损伤损害其控制能力时才会显现出来。从根本上讲,直立站立要求我们在一个小的支撑基础内平衡不稳定的全身负荷。直立身体的微小运动由各种感觉感受器检测到,所有这些感受器都通过其具有特定动力学的自身坐标系对这些运动进行编码。平衡控制器对身体运动的感觉线索进行过滤、处理和整合,以在与平衡相关运动的预测和实际感觉后果之间产生误差信号。响应于此误差生成补偿性运动指令以维持直立站立。在本综述中,我们首先简要描述站立平衡的生物力学和传感器动力学。我们进一步回顾揭示平衡系统运作原理的感觉运动和感知方法,以及探索直立姿势潜在控制过程的计算方法。最后,我们展示了一些机器人工具,这些工具可以虚拟站立平衡任务固有的感觉后果、生物力学和/或环境因素。在整个过程中,我们强调那些结合了感觉运动、计算和/或机器人方法的研究,以突出任务依赖性、多感觉线索组合、皮层 - 皮层下贡献以及支撑平衡控制的内部表征。