Suppr超能文献

通过基于单分子原子力显微镜的力谱探测严重急性呼吸综合征冠状病毒2膜结合肽

Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy.

作者信息

Zhang Qingrong, Rosa Raissa S L, Ray Ankita, Durlet Kimberley, Dorrazehi Gol Mohammad, Bernardi Rafael C, Alsteens David

机构信息

Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.

Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.

出版信息

Nat Commun. 2025 Jan 2;16(1):6. doi: 10.1038/s41467-024-55358-9.

Abstract

The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding. Our results show that the MBP preferentially associates with cholesterol-rich membranes, and we find that cholesterol depletion significantly reduces viral infectivity. Furthermore, we observe that the disulfide bridge stabilizes the MBP's interaction with the membrane, suggesting a structural role in viral entry. Together, these findings highlight the importance of membrane composition and peptide structure in SARS-CoV-2 infectivity and suggest that targeting the disulfide bridge could provide a therapeutic strategy against infection.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突蛋白的膜结合结构域连接病毒膜和宿主细胞膜,这是触发膜融合的关键步骤。在此,我们研究SARS-CoV-2刺突蛋白如何与宿主细胞膜相互作用,重点关注位于跨膜丝氨酸蛋白酶2(TMPRSS2)切割位点附近的膜结合肽(MBP)。通过体外和计算研究,我们检测了MBP的引发(TMPRSS2切割)和未引发版本,以及其保守二硫键对膜结合的影响。我们的结果表明,MBP优先与富含胆固醇的膜结合,并且我们发现胆固醇耗竭显著降低病毒感染性。此外,我们观察到二硫键稳定了MBP与膜的相互作用,表明其在病毒进入过程中具有结构作用。总之,这些发现突出了膜组成和肽结构在SARS-CoV-2感染性中的重要性,并表明靶向二硫键可能提供一种抗感染的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d13/11696146/26c6ddabb007/41467_2024_55358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验