Suppr超能文献

基于自集合同步训练的 COVID-19 CT 分割半监督方法。

Self-Ensembling Co-Training Framework for Semi-Supervised COVID-19 CT Segmentation.

出版信息

IEEE J Biomed Health Inform. 2021 Nov;25(11):4140-4151. doi: 10.1109/JBHI.2021.3103646. Epub 2021 Nov 5.

Abstract

The coronavirus disease 2019 (COVID-19) has become a severe worldwide health emergency and is spreading at a rapid rate. Segmentation of COVID lesions from computed tomography (CT) scans is of great importance for supervising disease progression and further clinical treatment. As labeling COVID-19 CT scans is labor-intensive and time-consuming, it is essential to develop a segmentation method based on limited labeled data to conduct this task. In this paper, we propose a self-ensembled co-training framework, which is trained by limited labeled data and large-scale unlabeled data, to automatically extract COVID lesions from CT scans. Specifically, to enrich the diversity of unsupervised information, we build a co-training framework consisting of two collaborative models, in which the two models teach each other during training by using their respective predicted pseudo-labels of unlabeled data. Moreover, to alleviate the adverse impacts of noisy pseudo-labels for each model, we propose a self-ensembling strategy to perform consistency regularization for the up-to-date predictions of unlabeled data, in which the predictions of unlabeled data are gradually ensembled via moving average at the end of every training epoch. We evaluate our framework on a COVID-19 dataset containing 103 CT scans. Experimental results show that our proposed method achieves better performance in the case of only 4 labeled CT scans compared to the state-of-the-art semi-supervised segmentation networks.

摘要

2019 年冠状病毒病(COVID-19)已成为全球严重的卫生紧急事件,并迅速蔓延。从计算机断层扫描(CT)扫描中对 COVID 病变进行分割对于监测疾病进展和进一步的临床治疗非常重要。由于对 COVID-19 CT 扫描进行标记是劳动密集型且耗时的,因此基于有限的标记数据开发分割方法对于完成此任务至关重要。在本文中,我们提出了一种自我集成的协同训练框架,该框架使用有限的标记数据和大规模的未标记数据进行训练,以自动从 CT 扫描中提取 COVID 病变。具体来说,为了丰富无监督信息的多样性,我们构建了一个由两个协作模型组成的协同训练框架,在该框架中,两个模型在训练过程中通过使用各自对未标记数据的预测伪标签来相互教授。此外,为了减轻每个模型的噪声伪标签的不利影响,我们提出了一种自我集成策略,对未标记数据的最新预测进行一致性正则化,其中在每个训练时期结束时通过移动平均对未标记数据的预测进行逐步集成。我们在包含 103 个 CT 扫描的 COVID-19 数据集上评估了我们的框架。实验结果表明,与最先进的半监督分割网络相比,我们提出的方法在仅 4 个标记 CT 扫描的情况下表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c4/8904133/ac95bc48814e/si1-3103646.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验