Suppr超能文献

基于双向约束双任务一致性引导的半监督医学图像分割

Semi-Supervised Medical Image Segmentation Guided by Bi-Directional Constrained Dual-Task Consistency.

作者信息

Pan Ming-Zhang, Liao Xiao-Lan, Li Zhen, Deng Ya-Wen, Chen Yuan, Bian Gui-Bin

机构信息

School of Mechanical Engineering, Guangxi University, Nanning 530004, China.

School of Electronic and Information Engineering, Tongji University, Shanghai 200092, China.

出版信息

Bioengineering (Basel). 2023 Feb 7;10(2):225. doi: 10.3390/bioengineering10020225.

Abstract

BACKGROUND

Medical image processing tasks represented by multi-object segmentation are of great significance for surgical planning, robot-assisted surgery, and surgical safety. However, the exceptionally low contrast among tissues and limited available annotated data makes developing an automatic segmentation algorithm for pelvic CT challenging.

METHODS

A bi-direction constrained dual-task consistency model named PICT is proposed to improve segmentation quality by leveraging free unlabeled data. First, to learn more unmarked data features, it encourages the model prediction of the interpolated image to be consistent with the interpolation of the model prediction at the pixel, model, and data levels. Moreover, to constrain the error prediction of interpolation interference, PICT designs an auxiliary pseudo-supervision task that focuses on the underlying information of non-interpolation data. Finally, an effective loss algorithm for both consistency tasks is designed to ensure the complementary manner and produce more reliable predictions.

RESULTS

Quantitative experiments show that the proposed PICT achieves 87.18%, 96.42%, and 79.41% mean DSC score on ACDC, CTPelvic1k, and the individual Multi-tissue Pelvis dataset with gains of around 0.8%, 0.5%, and 1% compared to the state-of-the-art semi-supervised method. Compared to the baseline supervised method, the PICT brings over 3-9% improvements.

CONCLUSIONS

The developed PICT model can effectively leverage unlabeled data to improve segmentation quality of low contrast medical images. The segmentation result could improve the precision of surgical path planning and provide input for robot-assisted surgery.

摘要

背景

以多目标分割为代表的医学图像处理任务对于手术规划、机器人辅助手术和手术安全具有重要意义。然而,组织间对比度极低以及可用标注数据有限,使得开发用于盆腔CT的自动分割算法具有挑战性。

方法

提出一种名为PICT的双向约束双任务一致性模型,通过利用免费的未标记数据来提高分割质量。首先,为了学习更多未标记数据特征,它促使插值图像的模型预测在像素、模型和数据层面与模型预测的插值保持一致。此外,为了约束插值干扰的误差预测,PICT设计了一个辅助伪监督任务,该任务聚焦于非插值数据的潜在信息。最后,针对两个一致性任务设计了一种有效的损失算法,以确保互补方式并产生更可靠的预测。

结果

定量实验表明,所提出的PICT在ACDC、CTPelvic1k和单个多组织骨盆数据集上分别达到了87.18%、96.42%和79.41%的平均DSC分数,与最先进的半监督方法相比,增益约为0.8%、0.5%和1%。与基线监督方法相比,PICT带来了超过3 - 9%的提升。

结论

所开发的PICT模型可以有效地利用未标记数据来提高低对比度医学图像的分割质量。分割结果可以提高手术路径规划的精度,并为机器人辅助手术提供输入。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8b8/9952498/3febf451011f/bioengineering-10-00225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验