IEEE Trans Med Imaging. 2020 Aug;39(8):2615-2625. doi: 10.1109/TMI.2020.2995965.
Accurate and rapid diagnosis of COVID-19 suspected cases plays a crucial role in timely quarantine and medical treatment. Developing a deep learning-based model for automatic COVID-19 diagnosis on chest CT is helpful to counter the outbreak of SARS-CoV-2. A weakly-supervised deep learning framework was developed using 3D CT volumes for COVID-19 classification and lesion localization. For each patient, the lung region was segmented using a pre-trained UNet; then the segmented 3D lung region was fed into a 3D deep neural network to predict the probability of COVID-19 infectious; the COVID-19 lesions are localized by combining the activation regions in the classification network and the unsupervised connected components. 499 CT volumes were used for training and 131 CT volumes were used for testing. Our algorithm obtained 0.959 ROC AUC and 0.976 PR AUC. When using a probability threshold of 0.5 to classify COVID-positive and COVID-negative, the algorithm obtained an accuracy of 0.901, a positive predictive value of 0.840 and a very high negative predictive value of 0.982. The algorithm took only 1.93 seconds to process a single patient's CT volume using a dedicated GPU. Our weakly-supervised deep learning model can accurately predict the COVID-19 infectious probability and discover lesion regions in chest CT without the need for annotating the lesions for training. The easily-trained and high-performance deep learning algorithm provides a fast way to identify COVID-19 patients, which is beneficial to control the outbreak of SARS-CoV-2. The developed deep learning software is available at https://github.com/sydney0zq/covid-19-detection.
准确快速地诊断 COVID-19 疑似病例对于及时隔离和治疗至关重要。开发基于深度学习的胸部 CT 自动 COVID-19 诊断模型有助于应对 SARS-CoV-2 的爆发。我们提出了一种基于弱监督的深度学习框架,用于 COVID-19 分类和病变定位。对于每个患者,使用预训练的 UNet 对肺区域进行分割;然后将分割后的 3D 肺区域输入 3D 深度神经网络,以预测 COVID-19 感染的概率;通过结合分类网络中的激活区域和无监督连通分量来定位 COVID-19 病变。使用了 499 个 CT 卷进行训练,使用了 131 个 CT 卷进行测试。我们的算法获得了 0.959 的 ROC AUC 和 0.976 的 PR AUC。当使用概率阈值 0.5 对 COVID-阳性和 COVID-阴性进行分类时,算法的准确率为 0.901,阳性预测值为 0.840,阴性预测值非常高,为 0.982。使用专用 GPU 处理单个患者的 CT 卷仅需 1.93 秒。我们的弱监督深度学习模型可以在不需要对病变进行标注的情况下准确预测 COVID-19 的感染概率并发现胸部 CT 中的病变区域。这种易于训练且性能高的深度学习算法为识别 COVID-19 患者提供了一种快速方法,有利于控制 SARS-CoV-2 的爆发。开发的深度学习软件可在 https://github.com/sydney0zq/covid-19-detection 获得。
IEEE Trans Med Imaging. 2020-8
IEEE Trans Med Imaging. 2020-8
Cochrane Database Syst Rev. 2020-9-30
IEEE Trans Med Imaging. 2020-8
J Formos Med Assoc. 2020-5
IEEE Trans Med Imaging. 2020-8
Eur Rev Med Pharmacol Sci. 2020-8
Mob Netw Appl. 2023-2-2
Diagnostics (Basel). 2024-6-20
Int J Intell Syst. 2021-9
J Imaging Inform Med. 2024-10