Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
Department of Radiation Oncology, Washington University in St. Louis, St Louis, MO 63110, United States of America.
Biomed Phys Eng Express. 2021 Aug 18;7(5). doi: 10.1088/2057-1976/ac1c51.
MR-guided radiotherapy (MRgRT) systems provide excellent soft tissue imaging immediately prior to and in real time during radiation delivery for cancer treatment. However, 2D cine MRI often has limited spatial resolution due to high temporal resolution. This work applies a super resolution machine learning framework to 3.5 mm pixel edge length, low resolution (LR), sagittal 2D cine MRI images acquired on a MRgRT system to generate 0.9 mm pixel edge length, super resolution (SR), images originally acquired at 4 frames per second (FPS). LR images were collected from 50 pancreatic cancer patients treated on a ViewRay MR-LINAC. SR images were evaluated using three methods. 1) The first method utilized intrinsic image quality metrics for evaluation. 2) The second used relative metrics including edge detection and structural similarity index (SSIM). 3) Finally, automatically generated tumor contours were created on both low resolution and super resolution images to evaluate target delineation and compared with DICE and SSIM. Intrinsic image quality metrics all had statistically significant improvements for SR images versus LR images, with mean (±1 SD) BRISQUE scores of 29.65 ± 2.98 and 42.48 ± 0.98 for SR and LR, respectively. SR images showed good agreement with LR images in SSIM evaluation, indicating there was not significant distortion of the images. Comparison of LR and SR images with paired high resolution (HR) 3D images showed that SR images had a mean (±1 SD) SSIM value of 0.633 ± 0.063 and LR a value of 0.587 ± 0.067 (p ≪ 0.05). Contours generated on SR images were also more robust to noise addition than those generated on LR images. This study shows that super resolution with a machine learning framework can generate high spatial resolution images from 4fps low spatial resolution cine MRI acquired on the ViewRay MR-LINAC while maintaining tumor contour quality and without significant acquisition or post processing delay.
磁共振引导放射治疗(MRgRT)系统在癌症治疗过程中,在放射治疗前和实时提供出色的软组织成像。然而,二维电影磁共振成像(cine MRI)由于时间分辨率高,往往空间分辨率有限。本工作应用超分辨率机器学习框架,对 MRgRT 系统上采集的 3.5mm 像素边长、低分辨率(LR)、矢状面二维电影 MRI 图像进行处理,生成 0.9mm 像素边长、超分辨率(SR)图像,原始采集帧率为 4 帧每秒(FPS)。LR 图像采集自 50 例在 ViewRay MR-LINAC 上接受治疗的胰腺癌患者。使用三种方法对 SR 图像进行评估。1)第一种方法利用固有图像质量指标进行评估。2)第二种方法使用相对指标,包括边缘检测和结构相似性指数(SSIM)。3)最后,在低分辨率和超分辨率图像上自动生成肿瘤轮廓,评估靶区勾画,并与 DICE 和 SSIM 进行比较。与 LR 图像相比,SR 图像的固有图像质量指标均有统计学意义上的提高,BRISQUE 评分的均值(±1SD)分别为 29.65±2.98 和 42.48±0.98。SR 图像在 SSIM 评估中与 LR 图像具有良好的一致性,表明图像没有明显失真。与高分辨率(HR)3D 图像的 LR 和 SR 图像比较显示,SR 图像的 SSIM 值的均值(±1SD)为 0.633±0.063,LR 图像为 0.587±0.067(p≪0.05)。与 LR 图像相比,SR 图像生成的轮廓对噪声的添加更稳健。本研究表明,机器学习框架的超分辨率可以从 ViewRay MR-LINAC 上采集的 4FPS 低空间分辨率电影 MRI 生成高空间分辨率图像,同时保持肿瘤轮廓质量,且没有明显的采集或后处理延迟。