Temple University, Philadelphia, Pennsylvania 19122.
University of California, San Diego, La Jolla, California 92093.
J Neurosci. 2021 Sep 22;41(38):8040-8050. doi: 10.1523/JNEUROSCI.0316-21.2021. Epub 2021 Aug 10.
The detection of novelty indicates changes in the environment and the need to update existing representations. In response to novelty, interactions across the VTA-hippocampal circuit support experience-dependent plasticity in the hippocampus. While theories have broadly suggested plasticity-related changes are also instantiated in the cortex, research has also shown evidence for functional heterogeneity in cortical networks. It therefore remains unclear how the hippocampal-VTA circuit engages cortical networks, and whether novelty targets specific cortical regions or diffuse, large-scale cortical networks. To adjudicate the role of the VTA and hippocampus in cortical network plasticity, we used fMRI to compare resting-state functional coupling before and following exposure to novel scene images in human subjects of both sexes. Functional coupling between right anterior hippocampus and VTA was enhanced following novelty exposure. However, we also found evidence for a double dissociation, with anterior hippocampus and VTA showing distinct patterns of post-novelty functional coupling enhancements, targeting task-relevant regions versus large-scale networks, respectively. Further, significant correlations between these networks and the novelty-related plasticity in the anterior hippocampal-VTA functional network suggest that the central hippocampal-VTA network may facilitate the interactions with the cortex. These findings support an extended model of novelty-induced plasticity, in which novelty elicits plasticity-related changes in both local and global cortical networks. Novelty detection is critical for adaptive behavior, signaling the need to update existing representations. By engaging the bidirectional hippocampal-VTA circuit, novelty has been shown to induce plasticity-related changes in the hippocampus. However, it remains an open question how novelty targets such plasticity-related changes in cortical networks. We show that anterior hippocampus and VTA target cortical networks at different spatial scales, with respective enhancements in post-novelty functional coupling with a task-relevant cortical region and a large-scale memory network. The results presented here support an extended model of novelty-related plasticity, in which engaging the anterior hippocampal-VTA circuit through novelty exposure propagates cortical plasticity through hippocampal and VTA functional pathways at distinct scales, targeting specific or diffuse cortical networks.
新颖性的检测表明环境发生了变化,需要更新现有的表示。为了应对新颖性,VTA-海马体回路中的相互作用支持了海马体中的经验依赖性可塑性。虽然理论广泛表明,与可塑性相关的变化也在皮层中体现出来,但研究也表明皮层网络存在功能异质性。因此,尚不清楚海马体-VTA 回路如何与皮层网络相互作用,以及新颖性是否针对特定的皮层区域或弥散的大规模皮层网络。为了解决 VTA 和海马体在皮层网络可塑性中的作用,我们使用 fMRI 比较了男性和女性被试在暴露于新场景图像前后的静息状态功能连接。新颖性暴露后,右侧前海马体和 VTA 之间的功能连接增强。然而,我们也发现了证据表明存在双重分离,前海马体和 VTA 分别显示出与 novelty 相关的功能连接增强的不同模式,分别针对任务相关区域和大规模网络。此外,这些网络与前海马体-VTA 功能网络中与 novelty 相关的可塑性之间的显著相关性表明,中央海马体-VTA 网络可能有助于与皮层的相互作用。这些发现支持了一个扩展的新颖性诱导可塑性模型,其中新颖性在局部和全局皮层网络中引发与可塑性相关的变化。新颖性检测对于适应行为至关重要,表明需要更新现有的表示。通过激活双向海马体-VTA 回路,新颖性已被证明可以诱导海马体中的与可塑性相关的变化。然而,新颖性如何针对皮层网络中的这种与可塑性相关的变化仍然是一个悬而未决的问题。我们表明,前海马体和 VTA 以不同的空间尺度靶向皮层网络,分别在新颖性后功能连接增强与任务相关的皮层区域和大规模记忆网络。这里呈现的结果支持了一个扩展的新颖性相关可塑性模型,其中通过新颖性暴露激活前海马体-VTA 回路,通过海马体和 VTA 功能途径在不同的尺度上传播皮层可塑性,针对特定或弥散的皮层网络。