Suppr超能文献

血清或血浆样本中子宫内膜癌与良性对照的中红外光谱分类。

Mid-infrared spectral classification of endometrial cancer compared to benign controls in serum or plasma samples.

机构信息

Mid-Infrared Photonics Group, George Green Institute for Electromagnetics' Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK.

Obstetrics and Gynaecology, Nottingham University Hospitals NHS Trust - City Campus, Nottingham City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK.

出版信息

Analyst. 2021 Sep 13;146(18):5631-5642. doi: 10.1039/d1an00833a.

Abstract

This study demonstrates a discrimination of endometrial cancer (non-cancerous) benign controls based on mid-infrared (MIR) spectroscopy of dried plasma or serum liquid samples. A detailed evaluation was performed using four discriminant methods (LDA, QDA, kNN or SVM) to execute the classification task. The discriminant methods used in the study comprised methods that are widely used in the statistics (LDA and QDA) and machine learning literature (kNN and SVM). Of particular interest, is the impact of discrimination when presented with spectral data from a section of the bio-fingerprint region (1430 cm to 900 cm) in contrast to the more extended bio-fingerprint region used here (1800 cm to 900 cm). Quality metrics used were the misclassification rate, sensitivity, specificity, and Matthew's correlation coefficient (MCC). For plasma (with spectral data ranging from 1430 cm to 900 cm), the best performing classifier was kNN, which achieved a sensitivity, specificity and MCC of 0.865 ± 0.043, 0.865 ± 0.023 and 0.762 ± 0.034, respectively. For serum (in the same wavenumber range), the best performing classifier was LDA, achieving a sensitivity, specificity and MCC of 0.899 ± 0.023, 0.763 ± 0.048 and 0.664 ± 0.067, respectively. For plasma (with spectral data ranging from 1800 cm to 900 cm), the best performing classifier was SVM, with a sensitivity, specificity and MCC of 0.993 ± 0.010, 0.815 ± 0.000 and 0.815 ± 0.010, respectively. For serum (in the same wavenumber range), QDA performed best achieving a sensitivity, specificity and MCC of 0.852 ± 0.023, 0.700 ± 0.162 and 0.557 ± 0.012, respectively. Our findings demonstrate that even when a section of the bio-fingerprint region has been removed, good classification of endometrial cancer non-cancerous controls is still maintained. These findings suggest the potential of a MIR screening tool for endometrial cancer screening.

摘要

本研究通过对干燥血浆或血清液样品的中红外(MIR)光谱分析,证明了基于中红外光谱(MIR)的方法可以区分子宫内膜癌(非癌性)良性对照。本研究使用四种判别方法(LDA、QDA、kNN 或 SVM)对其进行了详细评估,以执行分类任务。本研究中使用的判别方法包括统计学(LDA 和 QDA)和机器学习文献(kNN 和 SVM)中广泛使用的方法。特别值得注意的是,与本文中使用的更广泛的生物指纹区域(1800cm 至 900cm)相比,在生物指纹区域的一部分(1430cm 至 900cm)呈现光谱数据时,区分的影响。所使用的质量指标包括错误分类率、灵敏度、特异性和马修相关系数(MCC)。对于血浆(光谱数据范围为 1430cm 至 900cm),表现最好的分类器是 kNN,其灵敏度、特异性和 MCC 分别为 0.865 ± 0.043、0.865 ± 0.023 和 0.762 ± 0.034。对于血清(在相同的波数范围内),表现最好的分类器是 LDA,其灵敏度、特异性和 MCC 分别为 0.899 ± 0.023、0.763 ± 0.048 和 0.664 ± 0.067。对于血浆(光谱数据范围为 1800cm 至 900cm),表现最好的分类器是 SVM,其灵敏度、特异性和 MCC 分别为 0.993 ± 0.010、0.815 ± 0.000 和 0.815 ± 0.010。对于血清(在相同的波数范围内),QDA 的表现最好,其灵敏度、特异性和 MCC 分别为 0.852 ± 0.023、0.700 ± 0.162 和 0.557 ± 0.012。我们的研究结果表明,即使在去除生物指纹区域的一部分后,仍然可以很好地区分子宫内膜癌(非癌性)良性对照。这些发现表明,MIR 筛选工具具有用于子宫内膜癌筛查的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验