Suppr超能文献

SARS-CoV-2 N 区的 microRNA:生物传感器开发的潜在传感元件。

MicroRNA of N-region from SARS-CoV-2: Potential sensing components for biosensor development.

机构信息

Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.

Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.

出版信息

Biotechnol Appl Biochem. 2022 Aug;69(4):1696-1711. doi: 10.1002/bab.2239. Epub 2021 Aug 22.

Abstract

An oligonucleotide DNA probe has been developed for the application in the DNA electrochemical biosensor for the early diagnosis of coronavirus disease (COVID-19). Here, the virus microRNA from the N-gene of severe acute respiratory syndrome-2 (SARS-CoV-2) was used for the first time as a specific target for detecting the virus and became a framework for developing the complementary DNA probe. The sequence analysis of the virus microRNA was carried out using bioinformatics tools including basic local alignment search tools, multiple sequence alignment from CLUSTLW, microRNA database (miRbase), microRNA target database, and gene analysis. Cross-validation of distinct strains of coronavirus and human microRNA sequences was completed to validate the percentage of identical and consent regions. The percent identity parameter from the bioinformatics tools revealed the virus microRNAs' sequence has a 100% match with the genome of SARS-CoV-2 compared with other coronavirus strains, hence improving the selectivity of the complementary DNA probe. The 30 mer with 53.0% GC content of complementary DNA probe 5' GCC TGA GTT GAG TCA GCA CTG CTC ATG GAT 3' was designed and could be used as a bioreceptor for the biosensor development in the clinical and environmental diagnosis of COVID-19.

摘要

已经开发出一种寡核苷酸 DNA 探针,用于冠状病毒病 (COVID-19) 的 DNA 电化学生物传感器的早期诊断。在这里,首次将严重急性呼吸系统综合征 2 型 (SARS-CoV-2) 的 N 基因中的病毒 microRNA 用作检测病毒的特定靶标,并成为开发互补 DNA 探针的框架。使用生物信息学工具(包括基本局部比对搜索工具、来自 CLUSTLW 的多序列比对、microRNA 数据库 (miRbase)、microRNA 靶标数据库和基因分析)对病毒 microRNA 的序列进行了分析。完成了不同冠状病毒株和人类 microRNA 序列的交叉验证,以验证相同和一致区域的百分比。来自生物信息学工具的同一性参数表明,与其他冠状病毒株相比,病毒 microRNAs 的序列与 SARS-CoV-2 的基因组具有 100%的匹配性,从而提高了互补 DNA 探针的选择性。设计了 30 个碱基、53.0%GC 含量的互补 DNA 探针 5' GCC TGA GTT GAG TCA GCA CTG CTC ATG GAT 3',可作为生物传感器的生物受体,用于 COVID-19 的临床和环境诊断。

相似文献

1
MicroRNA of N-region from SARS-CoV-2: Potential sensing components for biosensor development.
Biotechnol Appl Biochem. 2022 Aug;69(4):1696-1711. doi: 10.1002/bab.2239. Epub 2021 Aug 22.
4
MicroRNA-Mediated Regulation of the Virus Cycle and Pathogenesis in the SARS-CoV-2 Disease.
Int J Mol Sci. 2021 Dec 7;22(24):13192. doi: 10.3390/ijms222413192.
5
High-coverage SARS-CoV-2 genome sequences acquired by target capture sequencing.
J Med Virol. 2020 Oct;92(10):2221-2226. doi: 10.1002/jmv.26116. Epub 2020 Jun 19.
6
Designing probe from E6 genome region of human Papillomavirus 16 for sensing applications.
Int J Biol Macromol. 2018 Feb;107(Pt B):1738-1746. doi: 10.1016/j.ijbiomac.2017.10.051. Epub 2017 Oct 10.
7
Target-triggered cascade signal amplification for sensitive electrochemical detection of SARS-CoV-2 with clinical application.
Anal Chim Acta. 2022 May 22;1208:339846. doi: 10.1016/j.aca.2022.339846. Epub 2022 Apr 20.
10

引用本文的文献

2
The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review.
RSC Adv. 2022 Aug 12;12(35):22592-22607. doi: 10.1039/d2ra04162f. eCollection 2022 Aug 10.
3
Inactivation of SARS-CoV-2 by charged particles for Future Vaccine Production Applications: A Monte Carlo study.
Radiat Phys Chem Oxf Engl 1993. 2022 Sep;198:110265. doi: 10.1016/j.radphyschem.2022.110265. Epub 2022 May 28.

本文引用的文献

2
Potentials of MicroRNA in Early Detection of Ovarian Cancer by Analytical Electrical Biosensors.
Crit Rev Anal Chem. 2022;52(7):1511-1523. doi: 10.1080/10408347.2021.1890543. Epub 2021 Jun 7.
3
SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response.
J Biomed Res. 2021 Jan 29;35(3):216-227. doi: 10.7555/JBR.35.20200154.
4
Electrochemical Biosensors for the Detection of SARS-CoV-2 and Other Viruses.
Micromachines (Basel). 2021 Feb 10;12(2):174. doi: 10.3390/mi12020174.
5
Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing.
J Am Chem Soc. 2021 Feb 3;143(4):1722-1727. doi: 10.1021/jacs.0c10810. Epub 2021 Jan 22.
6
Computationally predicted SARS-COV-2 encoded microRNAs target NFKB, JAK/STAT and TGFB signaling pathways.
Gene Rep. 2021 Mar;22:101012. doi: 10.1016/j.genrep.2020.101012. Epub 2020 Dec 31.
7
The potential application of electrochemical biosensors in the COVID-19 pandemic: A perspective on the rapid diagnostics of SARS-CoV-2.
Biosens Bioelectron. 2021 Mar 15;176:112905. doi: 10.1016/j.bios.2020.112905. Epub 2020 Dec 17.
8
Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates.
Nat Commun. 2020 Nov 27;11(1):6041. doi: 10.1038/s41467-020-19843-1.
9
Novel SARS-CoV-2 encoded small RNAs in the passage to humans.
Bioinformatics. 2021 Apr 5;36(24):5571-5581. doi: 10.1093/bioinformatics/btaa1002.
10
Sensitivity evaluation of 2019 novel coronavirus (SARS-CoV-2) RT-PCR detection kits and strategy to reduce false negative.
PLoS One. 2020 Nov 18;15(11):e0241469. doi: 10.1371/journal.pone.0241469. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验