La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia.
School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia.
Cells. 2021 Feb 4;10(2):319. doi: 10.3390/cells10020319.
Our knowledge of the evolution and the role of untranslated region (UTR) in SARS-CoV-2 pathogenicity is very limited. Leader sequence, originated from UTR, is found at the 5' ends of all encoded SARS-CoV-2 transcripts, highlighting its importance. Here, evolution of leader sequence was compared between human pathogenic and non-pathogenic coronaviruses. Then, profiling of microRNAs that can inactivate the key UTR regions of coronaviruses was carried out. A distinguished pattern of evolution in leader sequence of SARS-CoV-2 was found. Mining all available microRNA families against leader sequences of coronaviruses resulted in discovery of 39 microRNAs with a stable thermodynamic binding energy. Notably, SARS-CoV-2 had a lower binding stability against microRNAs. hsa-MIR-5004-3p was the only human microRNA able to target the leader sequence of SARS and to a lesser extent, also SARS-CoV-2. However, its binding stability decreased remarkably in SARS-COV-2. We found some plant microRNAs with low and stable binding energy against SARS-COV-2. Meta-analysis documented a significant ( < 0.01) decline in the expression of MIR-5004-3p after SARS-COV-2 infection in trachea, lung biopsy, and bronchial organoids as well as lung-derived Calu-3 and A549 cells. The paucity of the innate human inhibitory microRNAs to bind to leader sequence of SARS-CoV-2 can contribute to its high replication in infected human cells.
我们对非翻译区(UTR)在 SARS-CoV-2 致病中的进化和作用知之甚少。来自 UTR 的 5' 端序列位于所有编码的 SARS-CoV-2 转录本的 5' 端,突出了其重要性。在这里,比较了人致病性和非致病性冠状病毒的 5' 端序列的进化。然后,对能够使冠状病毒关键 UTR 区域失活的 microRNA 进行了分析。发现 SARS-CoV-2 5' 端序列的进化模式明显不同。针对冠状病毒的 5' 端序列挖掘所有可用的 microRNA 家族,发现了 39 个具有稳定热力学结合能的 microRNA。值得注意的是,SARS-CoV-2 对 microRNA 的结合稳定性较低。hsa-MIR-5004-3p 是唯一能够靶向 SARS 5' 端序列的人类 microRNA,对 SARS-CoV-2 的靶向能力稍弱。然而,其在 SARS-CoV-2 中的结合稳定性显著降低。我们发现一些植物 microRNA 对 SARS-CoV-2 具有低而稳定的结合能。荟萃分析记录了在 SARS-CoV-2 感染后,气管、肺活检和支气管类器官以及肺源性 Calu-3 和 A549 细胞中 MIR-5004-3p 的表达显著(<0.01)下降。先天的人类抑制性 microRNA 缺乏对 SARS-CoV-2 5' 端序列的结合能力可能导致其在感染的人类细胞中高度复制。