3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece; BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R Demokritos, Greece.
BIOEMTECH, 27 Neapoleos st., Lefkippos Attica Technology Park - N.C.S.R Demokritos, Greece.
Phys Med. 2021 Sep;89:160-168. doi: 10.1016/j.ejmp.2021.07.033. Epub 2021 Aug 8.
Over the last few years studies are conducted, highlighting the feasibility of Gold Nanoparticles (GNPs) to be used in clinical CT imaging and as an efficient contrast agent for cancer research. After ensuring that GNPs formulations are appropriate for in vivo or clinical use, the next step is to determine the parameters for an X-ray system's optimal contrast for applications and to extract quantitative information. There is currently a gap and need to exploit new X-ray imaging protocols and processing algorithms, through specific models avoiding trial-and-error procedures and provide an imaging prognosis tool. Such a model can be used to confirm the accumulation of GNPs in target organs before radiotherapy treatments with a system easily available in hospitals, as low energy X-rays.
In this study a complete, easy-to-use, simulation platform is designed and built, where simple parameters, as the X-ray's specifications and experimentally defined biodistributions of specific GNPs are imported. The induced contrast and images can be exported, and accurate quantification can be performed. This platform is based on the GATE Monte Carlo simulation toolkit, based on the GEANT4 toolkit and the MOBY phantom, a realistic 4D digital mouse.
We have validated this simulation platform to predict the contrast induction and minimum detectable concentration of GNPs on any given X-ray system. The study was applied to preclinical studies but is also expandable to clinical studies.
According to our knowledge, no other such validated simulation model currently exists, and this model could help radiology imaging with GNPs to be truly deployed.
在过去的几年中,进行了多项研究,强调了金纳米颗粒(GNPs)在临床 CT 成像中的应用可行性,并作为癌症研究的有效对比剂。在确保 GNPs 制剂适合体内或临床使用后,下一步是确定 X 射线系统的最佳对比参数,以用于应用,并提取定量信息。目前存在差距,需要开发新的 X 射线成像协议和处理算法,通过特定模型避免反复试验的过程,并提供成像预测工具。这种模型可用于在放射治疗前确认目标器官中 GNPs 的积累,使用医院中容易获得的低能 X 射线系统。
在这项研究中,设计并构建了一个完整、易于使用的模拟平台,其中可以导入简单的参数,如 X 射线的规格和特定 GNPs 的实验定义的生物分布。可以导出诱导对比度和图像,并进行准确的定量分析。该平台基于 GATE 蒙特卡罗模拟工具包,基于 GEANT4 工具包和 MOBY 体模,这是一个逼真的 4D 数字老鼠。
我们已经验证了该模拟平台,以预测任何给定 X 射线系统上 GNPs 的对比诱导和最小可检测浓度。该研究应用于临床前研究,但也可扩展到临床研究。
据我们所知,目前没有其他经过验证的模拟模型,该模型可以帮助放射科医生真正部署 GNPs 成像。