Suppr超能文献

相似文献

1
Synthesis of Multi-Protein Complexes through Charge-Directed Sequential Activation of Tyrosine Residues.
J Am Chem Soc. 2021 Sep 1;143(34):13538-13547. doi: 10.1021/jacs.1c03079. Epub 2021 Aug 12.
2
Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein.
Biochemistry. 2017 Oct 17;56(41):5593-5603. doi: 10.1021/acs.biochem.7b00635. Epub 2017 Sep 27.
3
First structures of an active bacterial tyrosinase reveal copper plasticity.
J Mol Biol. 2011 Jan 7;405(1):227-37. doi: 10.1016/j.jmb.2010.10.048. Epub 2010 Oct 30.
4
Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein.
J Basic Microbiol. 2016 Dec;56(12):1331-1337. doi: 10.1002/jobm.201600203. Epub 2016 Jun 9.
5
Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins.
J Am Chem Soc. 2020 Mar 18;142(11):5078-5086. doi: 10.1021/jacs.9b12002. Epub 2020 Mar 5.
6
Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium.
J Mol Microbiol Biotechnol. 2009;17(4):188-200. doi: 10.1159/000233506. Epub 2009 Aug 6.
7
Quantum chemical approach to the mechanism for the biological conversion of tyrosine to dopaquinone.
J Am Chem Soc. 2008 Dec 17;130(50):16890-7. doi: 10.1021/ja802618s.
9
Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities.
J Enzyme Inhib Med Chem. 2020 Dec;35(1):726-732. doi: 10.1080/14756366.2020.1740691.
10
Influencing the monophenolase/diphenolase activity ratio in tyrosinase.
Biochim Biophys Acta. 2013 Mar;1834(3):629-33. doi: 10.1016/j.bbapap.2012.12.021. Epub 2013 Jan 8.

引用本文的文献

1
Introduction of Reactive Thiol Handles into Tyrosine-Tagged Proteins through Enzymatic Oxidative Coupling.
J Am Chem Soc. 2025 Jul 9;147(27):23834-23843. doi: 10.1021/jacs.5c06195. Epub 2025 Jun 27.
2
Tyrosinases: a family of copper-containing metalloenzymes.
ChemTexts. 2024;10(4):12. doi: 10.1007/s40828-024-00195-y. Epub 2024 Nov 30.
3
DNA-Regulated Multi-Protein Complement Control.
J Am Chem Soc. 2024 Dec 4;146(48):32912-32918. doi: 10.1021/jacs.4c11315. Epub 2024 Nov 21.
4
Tyrosinase-Mediated Conjugation for Antigen Display on Ferritin Nanoparticles.
Bioconjug Chem. 2024 Sep 27;35(10):1608-17. doi: 10.1021/acs.bioconjchem.4c00387.
5
Facile Access to Branched Multispecific Proteins.
Bioconjug Chem. 2024 Jul 17;35(7):954-962. doi: 10.1021/acs.bioconjchem.4c00162. Epub 2024 Jun 16.
6
A simple method for developing lysine targeted covalent protein reagents.
Nat Commun. 2023 Dec 1;14(1):7933. doi: 10.1038/s41467-023-42632-5.
7
Recent developments in the cleavage, functionalization, and conjugation of proteins and peptides at tyrosine residues.
Chem Sci. 2023 Jun 27;14(29):7782-7817. doi: 10.1039/d3sc02543h. eCollection 2023 Jul 26.
8
Tyrosinase-Catalyzed Peptide Macrocyclization for mRNA Display.
J Am Chem Soc. 2023 May 17;145(19):10445-10450. doi: 10.1021/jacs.2c12629. Epub 2023 May 8.
9
Tyrosine bioconjugation with hypervalent iodine.
Chem Sci. 2022 Oct 12;13(43):12808-12817. doi: 10.1039/d2sc04558c. eCollection 2022 Nov 9.
10
Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded Antibody Oligomers.
Chem. 2022 Nov 10;8(11):3018-3030. doi: 10.1016/j.chempr.2022.07.003. Epub 2022 Aug 5.

本文引用的文献

1
Site-Specific Bioconjugation through Enzyme-Catalyzed Tyrosine-Cysteine Bond Formation.
ACS Cent Sci. 2020 Sep 23;6(9):1564-1571. doi: 10.1021/acscentsci.0c00940. Epub 2020 Aug 21.
2
Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins.
J Am Chem Soc. 2020 Mar 18;142(11):5078-5086. doi: 10.1021/jacs.9b12002. Epub 2020 Mar 5.
3
Live-Cell Imaging of Protein Degradation Utilizing Designed Protein-Tag Mutant and Fluorescent Probe with Turn-Off Switch.
Bioconjug Chem. 2020 Mar 18;31(3):577-583. doi: 10.1021/acs.bioconjchem.9b00696. Epub 2020 Jan 9.
4
Chemoenzymatic Semisynthesis of Proteins.
Chem Rev. 2020 Mar 25;120(6):3051-3126. doi: 10.1021/acs.chemrev.9b00450. Epub 2019 Nov 27.
5
Site-Specific Sequential Protein Labeling Catalyzed by a Single Recombinant Ligase.
J Am Chem Soc. 2019 Oct 30;141(43):17388-17393. doi: 10.1021/jacs.9b09166. Epub 2019 Oct 16.
6
Site-Selective Protein Immobilization on Polymeric Supports through N-Terminal Imidazolidinone Formation.
Biomacromolecules. 2019 Oct 14;20(10):3933-3939. doi: 10.1021/acs.biomac.9b01002. Epub 2019 Sep 9.
7
Enzymatic Modification of N-Terminal Proline Residues Using Phenol Derivatives.
J Am Chem Soc. 2019 Mar 6;141(9):3885-3892. doi: 10.1021/jacs.8b10845. Epub 2019 Feb 20.
8
One-Pot Dual Labeling of IgG 1 and Preparation of C-to-C Fusion Proteins Through a Combination of Sortase A and Butelase 1.
Bioconjug Chem. 2018 Oct 17;29(10):3245-3249. doi: 10.1021/acs.bioconjchem.8b00563. Epub 2018 Sep 21.
9
Bioconjugation with Maleimides: A Useful Tool for Chemical Biology.
Chemistry. 2019 Jan 2;25(1):43-59. doi: 10.1002/chem.201803174. Epub 2018 Nov 19.
10
Efficient farnesylation of an extended C-terminal C() sequence motif expands the scope of the prenylated proteome.
J Biol Chem. 2018 Feb 23;293(8):2770-2785. doi: 10.1074/jbc.M117.805770. Epub 2017 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验