Suppr超能文献

NAD 代谢在常氧条件下控制 HIF1 引起的生长抑制,并决定正常细胞和癌细胞的差异敏感性。

NAD metabolism controls growth inhibition by HIF1 in normoxia and determines differential sensitivity of normal and cancer cells.

机构信息

Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.

出版信息

Cell Cycle. 2021 Sep;20(18):1812-1827. doi: 10.1080/15384101.2021.1959988. Epub 2021 Aug 12.

Abstract

The hypoxia-induced transcription factor HIF1 inhibits cell growth in normoxia through poorly understood mechanisms. A constitutive upregulation of hypoxia response is associated with increased malignancy, indicating a loss of antiproliferative effects of HIF1 in cancer cells. To understand these differences, we examined the control of cell cycle in primary human cells with activated hypoxia response in normoxia. Activated HIF1 caused a global slowdown of cell cycle progression through G1, S and G2 phases leading to the loss of mitotic cells. Cell cycle inhibition required a prolonged HIF1 activation and was not associated with upregulation of p53 or the CDK inhibitors p16, p21 or p27. Growth inhibition by HIF1 was independent of its Asn803 hydroxylation or the presence of HIF2. Antiproliferative effects of hypoxia response were alleviated by inhibition of lactate dehydrogenase and, more effectively, by boosting cellular production of NAD, which was decreased by HIF1 activation. In comparison to normal cells, various cancer lines showed several fold-higher expressions of NAMPT, which is a rate-limiting enzyme in the main biosynthetic pathway for NAD. Inhibition of NAMPT activity in overexpressor cancer cells sensitized them to antigrowth effects of HIF1. Thus, metabolic changes in cancer cells, such as enhanced NAD production, create resistance to growth-inhibitory activity of HIF1 permitting manifestation of its tumor-promoting properties.: DMOG: dimethyloxalylglycine, DM-NOFD: dimethyl N-oxalyl-D-phenylalanine, NMN: β-nicotinamide mononucleotide.

摘要

缺氧诱导转录因子 HIF1 通过尚未完全阐明的机制在常氧条件下抑制细胞生长。缺氧反应的组成性上调与恶性程度增加相关,表明 HIF1 在癌细胞中失去了抗增殖作用。为了理解这些差异,我们研究了在常氧条件下具有激活缺氧反应的原代人细胞中细胞周期的控制。激活的 HIF1 通过 G1、S 和 G2 期导致有丝分裂细胞丢失,导致细胞周期整体减慢。细胞周期抑制需要 HIF1 的长期激活,并且与 p53 或 CDK 抑制剂 p16、p21 或 p27 的上调无关。HIF1 的生长抑制与其 Asn803 羟化或 HIF2 的存在无关。通过抑制乳酸脱氢酶,更有效地通过提高 NAD 的细胞产生,可以缓解缺氧反应的抗增殖作用,而 NAD 的产生被 HIF1 激活所降低。与正常细胞相比,各种癌细胞系显示出 NAMPT 的表达高出数倍,NAMPT 是 NAD 主要生物合成途径中的限速酶。在过表达癌细胞中抑制 NAMPT 活性使它们对 HIF1 的抗生长作用敏感。因此,癌细胞中的代谢变化,如增强 NAD 产生,会产生对 HIF1 生长抑制活性的抗性,从而允许其促进肿瘤的特性表现出来。

相似文献

1
NAD metabolism controls growth inhibition by HIF1 in normoxia and determines differential sensitivity of normal and cancer cells.
Cell Cycle. 2021 Sep;20(18):1812-1827. doi: 10.1080/15384101.2021.1959988. Epub 2021 Aug 12.
7
NAMPT inhibitor and metabolite protect mouse brain from cryoinjury through distinct mechanisms.
Neuroscience. 2015 Apr 16;291:230-40. doi: 10.1016/j.neuroscience.2015.02.007. Epub 2015 Feb 12.
8
Reciprocal regulation by hypoxia-inducible factor-2α and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis.
Osteoarthritis Cartilage. 2015 Dec;23(12):2288-2296. doi: 10.1016/j.joca.2015.07.009. Epub 2015 Jul 23.
9
Hypoxia promotes mitochondrial glutamine metabolism through HIF1α-GDH pathway in human lung cancer cells.
Biochem Biophys Res Commun. 2017 Jan 29;483(1):32-38. doi: 10.1016/j.bbrc.2017.01.015. Epub 2017 Jan 5.
10
STAT3 and HIF1α cooperatively activate HIF1 target genes in MDA-MB-231 and RCC4 cells.
Oncogene. 2014 Mar 27;33(13):1670-9. doi: 10.1038/onc.2013.115. Epub 2013 Apr 22.

引用本文的文献

1
Nuclear SUMOylation and Proteotoxic Stress Responses to Metals with Different Ligand Preferences.
Chem Res Toxicol. 2025 May 19;38(5):942-953. doi: 10.1021/acs.chemrestox.5c00040. Epub 2025 Apr 17.
5
HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System.
Chem Res Toxicol. 2022 Oct 17;35(10):1690-1700. doi: 10.1021/acs.chemrestox.2c00131. Epub 2022 Aug 10.
6
Vulnerability of HIF1α and HIF2α to damage by proteotoxic stressors.
Toxicol Appl Pharmacol. 2022 Jun 15;445:116041. doi: 10.1016/j.taap.2022.116041. Epub 2022 Apr 30.

本文引用的文献

1
Metabolic Rewiring and the Characterization of Oncometabolites.
Cancers (Basel). 2021 Jun 10;13(12):2900. doi: 10.3390/cancers13122900.
2
Lactate Elicits ER-Mitochondrial Mg Dynamics to Integrate Cellular Metabolism.
Cell. 2020 Oct 15;183(2):474-489.e17. doi: 10.1016/j.cell.2020.08.049. Epub 2020 Oct 8.
3
NAD+ Regeneration Rescues Lifespan, but Not Ataxia, in a Mouse Model of Brain Mitochondrial Complex I Dysfunction.
Cell Metab. 2020 Aug 4;32(2):301-308.e6. doi: 10.1016/j.cmet.2020.06.003. Epub 2020 Jun 22.
5
Tumor Microenvironment: A Metabolic Player that Shapes the Immune Response.
Int J Mol Sci. 2019 Dec 25;21(1):157. doi: 10.3390/ijms21010157.
6
Keeping the balance in NAD metabolism.
Biochem Soc Trans. 2019 Feb 28;47(1):119-130. doi: 10.1042/BST20180417. Epub 2019 Jan 9.
7
Metabolite profiling identifies a signature of tumorigenicity in hepatocellular carcinoma.
Oncotarget. 2018 Jun 1;9(42):26868-26883. doi: 10.18632/oncotarget.25525.
8
Upregulation of Krebs cycle and anaerobic glycolysis activity early after onset of liver ischemia.
PLoS One. 2018 Jun 14;13(6):e0199177. doi: 10.1371/journal.pone.0199177. eCollection 2018.
9
Mechanisms of transcriptional regulation by p53.
Cell Death Differ. 2018 Jan;25(1):133-143. doi: 10.1038/cdd.2017.174. Epub 2017 Nov 10.
10
Tumour acidosis: from the passenger to the driver's seat.
Nat Rev Cancer. 2017 Oct;17(10):577-593. doi: 10.1038/nrc.2017.77. Epub 2017 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验