Cassim Shamir, Vučetić Milica, Ždralević Maša, Pouyssegur Jacques
Department of Medical Biology, Centre Scientifique de Monaco, CSM, 98000 Monaco, Monaco.
Centre A. Lacassagne, University Côte d'Azur, IRCAN, CNRS, 06189 Nice, France.
Cancers (Basel). 2020 Apr 30;12(5):1119. doi: 10.3390/cancers12051119.
A defining hallmark of tumor phenotypes is uncontrolled cell proliferation, while fermentative glycolysis has long been considered as one of the major metabolic pathways that allows energy production and provides intermediates for the anabolic growth of cancer cells. Although such a vision has been crucial for the development of clinical imaging modalities, it has become now evident that in contrast to prior beliefs, mitochondria play a key role in tumorigenesis. Recent findings demonstrated that a full genetic disruption of the Warburg effect of aggressive cancers does not suppress but instead reduces tumor growth. Tumor growth then relies exclusively on functional mitochondria. Besides having fundamental bioenergetic functions, mitochondrial metabolism indeed provides appropriate building blocks for tumor anabolism, controls redox balance, and coordinates cell death. Hence, mitochondria represent promising targets for the development of novel anti-cancer agents. Here, after revisiting the long-standing Warburg effect from a historic and dynamic perspective, we review the role of mitochondria in cancer with particular attention to the cancer cell-intrinsic/extrinsic mechanisms through which mitochondria influence all steps of tumorigenesis, and briefly discuss the therapeutic potential of targeting mitochondrial metabolism for cancer therapy.
肿瘤表型的一个决定性标志是细胞增殖不受控制,而发酵性糖酵解长期以来一直被认为是主要的代谢途径之一,它能产生能量并为癌细胞的合成代谢生长提供中间产物。尽管这种观点对于临床成像模式的发展至关重要,但现在已经很明显,与之前的看法相反,线粒体在肿瘤发生中起关键作用。最近的研究结果表明,侵袭性癌症的瓦伯格效应完全基因破坏并不会抑制肿瘤生长,反而会使其减缓。肿瘤生长随后完全依赖于功能性线粒体。除了具有基本的生物能量功能外,线粒体代谢确实为肿瘤合成代谢提供了合适的构件,控制氧化还原平衡,并协调细胞死亡。因此,线粒体是开发新型抗癌药物的有希望的靶点。在此,我们从历史和动态的角度重新审视了长期存在的瓦伯格效应之后,回顾了线粒体在癌症中的作用,特别关注线粒体影响肿瘤发生所有步骤的癌细胞内在/外在机制,并简要讨论了针对线粒体代谢进行癌症治疗的潜在疗法。