Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom.
Genes Dev. 2021 Sep 1;35(17-18):1290-1303. doi: 10.1101/gad.348634.121. Epub 2021 Aug 12.
Biogenesis of most eukaryotic mRNAs involves the addition of an untemplated polyadenosine (pA) tail by the cleavage and polyadenylation machinery. The pA tail, and its exact length, impacts mRNA stability, nuclear export, and translation. To define how polyadenylation is controlled in , we have used an in vivo assay capable of assessing nuclear pA tail synthesis, analyzed tail length distributions by direct RNA sequencing, and reconstituted polyadenylation reactions with purified components. This revealed three control mechanisms for pA tail length. First, we found that the pA binding protein (PABP) Nab2p is the primary regulator of pA tail length. Second, when Nab2p is limiting, the nuclear pool of Pab1p, the second major PABP in yeast, controls the process. Third, when both PABPs are absent, the cleavage and polyadenylation factor (CPF) limits pA tail synthesis. Thus, Pab1p and CPF provide fail-safe mechanisms to a primary Nab2p-dependent pathway, thereby preventing uncontrolled polyadenylation and allowing mRNA export and translation.
真核生物大多数 mRNA 的生物发生过程涉及通过切割和多聚腺苷酸化机制添加无模板多聚腺苷酸 (pA) 尾巴。pA 尾巴及其确切长度影响 mRNA 的稳定性、核输出和翻译。为了确定在 中多聚腺苷酸化是如何被控制的,我们使用了一种能够评估核 pA 尾巴合成的体内测定法,通过直接 RNA 测序分析了尾巴长度分布,并使用纯化的成分重新构建了多聚腺苷酸化反应。这揭示了 pA 尾巴长度的三种控制机制。首先,我们发现 pA 结合蛋白 (PABP) Nab2p 是 pA 尾巴长度的主要调节剂。其次,当 Nab2p 有限时,核池中 Pab1p(酵母中的第二种主要 PABP)控制该过程。第三,当两种 PABP 都不存在时,切割和多聚腺苷酸化因子 (CPF) 限制 pA 尾巴的合成。因此,Pab1p 和 CPF 为主要依赖 Nab2p 的途径提供了故障安全机制,从而防止了不受控制的多聚腺苷酸化,并允许 mRNA 输出和翻译。