Suppr超能文献

通过机器学习方法预测序列上下文偏好的 C 到 G 碱基编辑器的优化。

Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods.

机构信息

Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.

出版信息

Nat Commun. 2021 Aug 12;12(1):4902. doi: 10.1038/s41467-021-25217-y.

Abstract

Efficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the sequence context predictable via machine-learning methods. By changing the species origin and relative position of uracil-DNA glycosylase and deaminase, together with codon optimization, we obtain optimized C-to-G BEs (OPTI-CGBEs) for efficient C-to-G transversion. The motif preference of OPTI-CGBEs for editing 100 endogenous sites is determined in HEK293T cells. Using a sgRNA library comprising 41,388 sequences, we develop a deep-learning model that accurately predicts the OPTI-CGBE editing outcome for targeted sites with specific sequence context. These OPTI-CGBEs are further shown to be capable of efficient base editing in mouse embryos for generating Tyr-edited offspring. Thus, these engineered CGBEs are useful for efficient and precise base editing, with outcome predictable based on sequence context of targeted sites.

摘要

高效且精确的 C 到 G 颠换碱基编辑器(BEs)是非常需要的。然而,影响编辑结果的序列背景在很大程度上仍不清楚。在这里,我们报告了通过机器学习方法可预测序列背景的高效且高保真的工程化 C 到 G BE。通过改变尿嘧啶-DNA 糖基化酶和脱氨酶的物种来源和相对位置,以及密码子优化,我们获得了用于高效 C 到 G 颠换的优化 C 到 G BE(OPTI-CGBEs)。在 HEK293T 细胞中确定了 OPTI-CGBEs 对 100 个内源靶位点进行编辑的基序偏好。使用包含 41388 个序列的 sgRNA 文库,我们开发了一种深度学习模型,可准确预测具有特定序列背景的靶位点的 OPTI-CGBE 编辑结果。这些 OPTI-CGBEs 还可用于在小鼠胚胎中进行高效的碱基编辑,以产生 Tyr 编辑的后代。因此,这些工程化的 CGBEs 可用于高效且精确的碱基编辑,其结果可基于靶位点的序列背景进行预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8556/8361092/29c4f0c12167/41467_2021_25217_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验