Li Yucai, Li Shaoya, Li Chenfei, Zhang Chen, Yan Lei, Li Jingying, He Yubing, Guo Yan, Xia Lanqin
Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China.
State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China.
aBIOTECH. 2024 Mar 21;5(2):127-139. doi: 10.1007/s42994-024-00138-8. eCollection 2024 Jun.
Engineering of a new type of plant base editor for simultaneous adenine transition and transversion within the editing window will greatly expand the scope and potential of base editing in directed evolution and crop improvement. Here, we isolated a rice endogenous hypoxanthine excision protein, N-methylpurine DNA glycosylase (OsMPG), and engineered two plant A-to-K (K = G or T) base editors, rAKBE01 and rAKBE02, for simultaneous adenine transition and transversion base editing in rice by fusing OsMPG or its mutant mOsMPG to a plant adenine transition base editor, ABE8e. We further coupled either OsMPG or mOsMPG with a transactivation factor VP64 to generate rAKBE03 and rAKBE04, respectively. Testing these four rAKBEs, at five endogenous loci in rice protoplasts, indicated that rAKBE03 and rAKBE04 enabled higher levels of A-to-G base transitions when compared to ABE8e and ABE8e-VP64. Furthermore, whereas rAKBE01 only enabled A-to-C/T editing at one endogenous locus, in comparison with rAKBE02 and rAKBE03, rAKBE04 could significantly improve the A-to-C/T base transversion efficiencies by up to 6.57- and 1.75-fold in the rice protoplasts, respectively. Moreover, although no stable lines with A-to-C transversion were induced by rAKBE01 and rAKBE04, rAKBE04 could enable simultaneous A-to-G and A-to-T transition and transversion base editing, at all the five target loci, with the efficiencies of A-to-G transition and A-to-T transversion editing ranging from 70.97 to 92.31% and 1.67 to 4.84% in rice stable lines, respectively. Together, these rAKBEs enable different portfolios of editing products and, thus, now expands the potential of base editing in diverse application scenario for crop improvement.
The online version contains supplementary material available at 10.1007/s42994-024-00138-8.
构建一种新型植物碱基编辑器,使其能够在编辑窗口内同时实现腺嘌呤的转换和颠换,这将极大地扩展碱基编辑在定向进化和作物改良中的范围和潜力。在此,我们分离出一种水稻内源性次黄嘌呤切除蛋白,即N-甲基嘌呤DNA糖基化酶(OsMPG),并通过将OsMPG或其突变体mOsMPG与植物腺嘌呤转换碱基编辑器ABE8e融合,构建了两种植物A到K(K = G或T)碱基编辑器rAKBE01和rAKBE02,用于在水稻中同时进行腺嘌呤转换和颠换碱基编辑。我们进一步将OsMPG或mOsMPG与反式激活因子VP64偶联,分别生成rAKBE03和rAKBE04。在水稻原生质体的五个内源性位点测试这四种rAKBE,结果表明,与ABE8e和ABE8e-VP64相比,rAKBE03和rAKBE04能够实现更高水平的A到G碱基转换。此外,虽然rAKBE01仅在一个内源性位点实现了A到C/T编辑,但与rAKBE02和rAKBE03相比,rAKBE04在水稻原生质体中能够将A到C/T碱基颠换效率分别显著提高6.57倍和1.75倍。此外,虽然rAKBE01和rAKBE04均未诱导出具有A到C颠换的稳定株系,但rAKBE04能够在所有五个靶位点同时实现A到G和A到T的转换和颠换碱基编辑,在水稻稳定株系中,A到G转换和A到T颠换编辑的效率分别为70.97%至92.31%和1.67%至4.84%。总之,这些rAKBE能够产生不同组合的编辑产物,从而扩展了碱基编辑在作物改良多种应用场景中的潜力。
在线版本包含可在10.1007/s42994-024-00138-8获取的补充材料。