Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, No. 1 Dahua Road, Dongcheng District, Beijing, 100730, China.
Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 Dahua Road, Dongcheng District, Beijing, China.
Int J Comput Assist Radiol Surg. 2021 Oct;16(10):1727-1736. doi: 10.1007/s11548-021-02471-5. Epub 2021 Aug 12.
Carotid artery atherosclerotic stenosis accounts for 18-25% of ischemic stroke. In the evaluation of carotid atherosclerotic lesions, the automatic, accurate and rapid segmentation of the carotid artery is a priority issue that needs to be addressed urgently. However, the carotid artery area occupies a small target in computed tomography angiography (CTA) images, which affect the segmentation accuracy.
We proposed a coarse-to-fine segmentation pipeline with the Multiplanar D-SEA UNet to achieve fully automatic carotid artery segmentation on the entire 3D CTA images, and compared with other four neural networks (3D-UNet, RA-UNet, Isensee-UNet, Multiplanar-UNet) by assessing Dice, Jaccard similarity coefficient, sensitivity, area under the curve and average hausdorff distance.
Our proposed method can achieve a mean Dice score of 91.51% on the 68 neck CTA scans from Beijing Hospital, which remarkably outperforms state-of-the-art 3D image segmentation methods. And the C2F segmentation pipeline can effectively improve segmentation accuracy while avoiding resolution loss.
The proposed segmentation method can realize the fully automatic segmentation of the carotid artery and has robust performance with segmentation accuracy, which can be applied into plaque exfoliation and interventional surgery services. In addition, our method is easy to extend to other medical segmentation tasks with appropriate parameter settings.
颈动脉粥样硬化性狭窄占缺血性脑卒中的 18-25%。在评估颈动脉粥样硬化病变时,颈动脉的自动、准确和快速分割是一个亟待解决的优先问题。然而,颈动脉区域在计算机断层血管造影(CTA)图像中占据较小的目标,这会影响分割的准确性。
我们提出了一种从粗到精的分割流水线,使用多层面 D-SEA UNet 对整个 3D CTA 图像进行全自动颈动脉分割,并通过评估 Dice、Jaccard 相似系数、灵敏度、曲线下面积和平均 Hausdorff 距离,与其他四个神经网络(3D-UNet、RA-UNet、Isensee-UNet、多层面 UNet)进行比较。
我们提出的方法可以在来自北京医院的 68 个颈部 CTA 扫描中实现平均 Dice 得分 91.51%,明显优于最先进的 3D 图像分割方法。并且 C2F 分割流水线可以在避免分辨率损失的同时有效提高分割准确性。
所提出的分割方法可以实现颈动脉的全自动分割,具有较高的分割精度和稳健性能,可应用于斑块剥离和介入手术服务。此外,通过适当的参数设置,我们的方法很容易扩展到其他医学分割任务。