Dept. of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
mbits imaging GmbH, Heidelberg, Germany.
Clin Neuroradiol. 2023 Sep;33(3):783-792. doi: 10.1007/s00062-023-01276-0. Epub 2023 Mar 16.
Endovascular thrombectomy (EVT) duration is an important predictor for neurological outcome. Recently it was shown that an angle of ≤ 90° of the internal carotid artery (ICA) is predictive for longer EVT duration. As manual angle measurement is not trivial and time-consuming, deep learning (DL) could help identifying difficult EVT cases in advance.
We included 379 CT angiographies (CTA) of patients who underwent EVT between January 2016 and December 2020. Manual segmentation of 121 CTAs was performed for the aortic arch, common carotid artery (CCA) and ICA. These were used to train a nnUNet. The remaining 258 CTAs were segmented using the trained nnUNet with manual verification afterwards. Angles of left and right ICAs were measured resulting in two classes: acute angle ≤ 90° and > 90°. The segmentations together with angle measurements were used to train a convolutional neural network (CNN) determining the ICA angle. The performance was evaluated using Dice scores. The classification was evaluated using AUC and accuracy. Associations of ICA angle and procedural times was explored using median and Whitney‑U test.
Median EVT duration for cases with ICA angle > 90° was 48 min and with ≤ 90° was 64 min (p = 0.001). Segmentation evaluation showed Dice scores of 0.94 for the aorta and 0.86 for CCA/ICA, respectively. Evaluation of ICA angle determination resulted in an AUC of 0.92 and accuracy of 0.85.
The association between ICA angle and EVT duration could be verified and a DL-based method for semi-automatic assessment with the potential for full automation was developed. More anatomical features of interest could be examined in a similar fashion.
血管内血栓切除术(EVT)的持续时间是神经功能预后的重要预测因素。最近有研究表明,颈内动脉(ICA)的角度≤90°可预测 EVT 持续时间较长。由于手动角度测量既不简单也很耗时,因此深度学习(DL)可以帮助提前识别困难的 EVT 病例。
我们纳入了 2016 年 1 月至 2020 年 12 月期间接受 EVT 的 379 例 CT 血管造影(CTA)患者。手动分割了 121 例 CTA 的主动脉弓、颈总动脉(CCA)和 ICA。这些被用于训练 nnUNet。其余 258 例 CTA 使用训练后的 nnUNet 进行分割,然后进行手动验证。测量左右 ICA 的角度,分为急性角≤90°和>90°两类。使用这些分割和角度测量结果来训练一个卷积神经网络(CNN),以确定 ICA 角度。使用 Dice 分数评估性能。使用 AUC 和准确性评估分类。探索 ICA 角度与手术时间之间的关联,使用中位数和惠特尼-U 检验。
ICA 角度>90°的病例的 EVT 持续时间中位数为 48 分钟,ICA 角度≤90°的病例的 EVT 持续时间中位数为 64 分钟(p=0.001)。分割评估显示,主动脉的 Dice 分数为 0.94,CCA/ICA 为 0.86。ICA 角度确定的评估结果得出 AUC 为 0.92,准确性为 0.85。
ICA 角度与 EVT 持续时间之间的关联得到了验证,并开发了一种基于深度学习的半自动评估方法,具有实现完全自动化的潜力。可以以类似的方式检查更多感兴趣的解剖特征。