Suppr超能文献

多组学网络特征分析揭示了新型 miRNA 生物标志物及其在肾移植排斥诊断和分型中的作用机制。

Multi-omics network characterization reveals novel microRNA biomarkers and mechanisms for diagnosis and subtyping of kidney transplant rejection.

机构信息

Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.

Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China.

出版信息

J Transl Med. 2021 Aug 13;19(1):346. doi: 10.1186/s12967-021-03025-8.

Abstract

BACKGROUND

Kidney transplantation is an optimal method for treatment of end-stage kidney failure. However, kidney transplant rejection (KTR) is commonly observed to have negative effects on allograft function. MicroRNAs (miRNAs) are small non-coding RNAs with regulatory role in KTR genesis, the identification of miRNA biomarkers for accurate diagnosis and subtyping of KTR is therefore of clinical significance for active intervention and personalized therapy.

METHODS

In this study, an integrative bioinformatics model was developed based on multi-omics network characterization for miRNA biomarker discovery in KTR. Compared with existed methods, the topological importance of miRNA targets was prioritized based on cross-level miRNA-mRNA and protein-protein interaction network analyses. The biomarker potential of identified miRNAs was computationally validated and explored by receiver-operating characteristic (ROC) evaluation and integrated "miRNA-gene-pathway" pathogenic survey.

RESULTS

Three miRNAs, i.e., miR-145-5p, miR-155-5p, and miR-23b-3p, were screened as putative biomarkers for KTR monitoring. Among them, miR-155-5p was a previously reported signature in KTR, whereas the remaining two were novel candidates both for KTR diagnosis and subtyping. The ROC analysis convinced the power of identified miRNAs as single and combined biomarkers for KTR prediction in kidney tissue and blood samples. Functional analyses, including the latent crosstalk among HLA-related genes, immune signaling pathways and identified miRNAs, provided new insights of these miRNAs in KTR pathogenesis.

CONCLUSIONS

A network-based bioinformatics approach was proposed and applied to identify candidate miRNA biomarkers for KTR study. Biological and clinical validations are further needed for translational applications of the findings.

摘要

背景

肾移植是治疗终末期肾衰竭的最佳方法。然而,肾移植排斥(KTR)通常会对同种异体移植物功能产生负面影响。微小 RNA(miRNA)是一种具有调节作用的小非编码 RNA,在 KTR 发生中具有重要作用,因此,miRNA 生物标志物的鉴定对于准确诊断和 KTR 亚型分型具有重要的临床意义,有利于积极干预和个性化治疗。

方法

本研究基于多组学网络特征,建立了一种综合的生物信息学模型,用于发现 KTR 中的 miRNA 生物标志物。与已有的方法相比,基于跨层次 miRNA-mRNA 和蛋白质-蛋白质相互作用网络分析,优先考虑了 miRNA 靶标的拓扑重要性。通过接受者操作特征(ROC)评估和整合的“miRNA-基因-通路”致病调查,对鉴定的 miRNA 的生物标志物潜力进行了计算验证和探索。

结果

筛选出三个 miRNA,即 miR-145-5p、miR-155-5p 和 miR-23b-3p,作为 KTR 监测的候选生物标志物。其中,miR-155-5p 是 KTR 中已报道的特征,而其余两个 miRNA 则是 KTR 诊断和分型的新候选物。ROC 分析证明了鉴定的 miRNA 作为 KTR 在肾组织和血液样本中预测的单一和组合生物标志物的强大功能。功能分析,包括 HLA 相关基因、免疫信号通路和鉴定的 miRNA 之间的潜在串扰,为这些 miRNA 在 KTR 发病机制中的作用提供了新的见解。

结论

提出并应用了一种基于网络的生物信息学方法来识别 KTR 研究的候选 miRNA 生物标志物。进一步的生物学和临床验证对于这些发现的转化应用是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a390/8361655/424cb139a830/12967_2021_3025_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验