Suppr超能文献

用于癌症微小RNA生物标志物发现的多变量竞争性内源性RNA网络特征分析:一种应用于前列腺癌转移的新型生物信息学模型

Multivariate competing endogenous RNA network characterization for cancer microRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis.

作者信息

Lin Yuxin, Qi Xin, Chen Jing, Shen Bairong

机构信息

Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China.

School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215011, China.

出版信息

Precis Clin Med. 2022 Jan 10;5(1):pbac001. doi: 10.1093/pcmedi/pbac001. eCollection 2022 Mar.

Abstract

BACKGROUND

MicroRNAs (miRNAs) are post-transcriptional regulators with potential as biomarkers for cancer management. Data-driven competing endogenous RNA (ceRNA) network modeling is an effective way to decipher the complex interplay between miRNAs and spongers. However, there are currently no general rules for ceRNA network-based biomarker prioritization.

METHODS AND RESULTS

In this study, a novel bioinformatics model was developed by integrating gene expression with multivariate miRNA-target data for ceRNA network-based biomarker discovery. Compared with traditional methods, the structural vulnerability in the human long non-coding RNA (lncRNA)-miRNA-messenger RNAs (mRNA) network was comprehensively analyzed, and the single-line regulatory or competing mode among miRNAs, lncRNAs, and mRNAs was characterized and quantified as statistical evidence for miRNA biomarker identification. The application of this model to prostate cancer (PCa) metastasis identified a total of 12 miRNAs as putative biomarkers from the metastatic PCa-specific lncRNA-miRNA-mRNA network and nine of them have been previously reported as biomarkers for PCa metastasis. The receiver operating characteristic curve and cell line qRT-PCR experiments demonstrated the power of , and as novel candidates for predicting PCa metastasis. Moreover, PCa-associated pathways such as prostate cancer signaling, signaling, and signaling were significantly enriched by targets of identified miRNAs, indicating the underlying mechanisms of miRNAs in PCa carcinogenesis.

CONCLUSIONS

A novel ceRNA-based bioinformatics model was proposed and applied to screen candidate miRNA biomarkers for PCa metastasis. Functional validations using human samples and clinical data will be performed for future translational studies on the identified miRNAs.

摘要

背景

微小RNA(miRNA)是转录后调节因子,具有作为癌症管理生物标志物的潜力。数据驱动的竞争性内源性RNA(ceRNA)网络建模是破译miRNA与海绵分子之间复杂相互作用的有效方法。然而,目前尚无基于ceRNA网络的生物标志物优先级排序的通用规则。

方法与结果

在本研究中,通过整合基因表达与多变量miRNA-靶标数据,开发了一种新型生物信息学模型,用于基于ceRNA网络的生物标志物发现。与传统方法相比,对人类长链非编码RNA(lncRNA)-miRNA-信使RNA(mRNA)网络中的结构脆弱性进行了全面分析,并对miRNA、lncRNA和mRNA之间的单线调节或竞争模式进行了表征和量化,作为miRNA生物标志物鉴定的统计证据。将该模型应用于前列腺癌(PCa)转移,从转移性PCa特异性lncRNA-miRNA-mRNA网络中鉴定出总共12种miRNA作为假定的生物标志物,其中9种先前已被报道为PCa转移的生物标志物。受试者工作特征曲线和细胞系qRT-PCR实验证明了 、 和 作为预测PCa转移新候选物的能力。此外,已鉴定miRNA的靶标显著富集了PCa相关途径,如前列腺癌信号传导、 信号传导和 信号传导,表明miRNA在PCa致癌过程中的潜在机制。

结论

提出了一种基于ceRNA的新型生物信息学模型,并将其应用于筛选PCa转移的候选miRNA生物标志物。未来将对鉴定出的miRNA进行转化研究,使用人类样本和临床数据进行功能验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d75a/9267254/b58a84d0fcba/pbac001fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验